用 PyTorch 构建液态神经网络(LNN)

2024-04-30 18:20

本文主要是介绍用 PyTorch 构建液态神经网络(LNN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用 PyTorch 构建液态神经网络(LNN)

在这里插入图片描述

文章目录

    • 什么是液态神经网络
    • 为什么需要液态神经网络
    • LNN 与 RNN 的区别
    • 用 PyTorch 实现 LNN
      • Step 1. 导入必要的库
      • Step 2. 定义网络架构
      • Step 3. 实现 ODE 求解器
      • Step 4. 定义训练逻辑
    • LNN 的缺陷
    • 总结

什么是液态神经网络

2020年,麻省理工学院(MIT)的两名研究人员带领团队推出了一种基于现实生活中的自然智能、而非人工智能的新型神经网络。他们从微小的秀丽隐杆线虫(Caenorhabditis elegans)中汲取灵感,尽管这种微生物的神经系统只有302个神经元,但却能够产生复杂的行为。受此启发,研究团队创造了所谓的 “液态神经网络” (Liquid Neural Networks)。经过2022年的突破,这种新型网络已经足够灵活,足以在某些应用中取代传统的神经网络。

在这里插入图片描述

液态神经网络(LNN)是一种神经网络,它顺序处理数据并能够实时适应变化的数据,非常类似于人类大脑。

在这里插入图片描述

LNN 架构

本质上,液态神经网络是一种时间连续的递归神经网络(RNN),它顺序处理数据,保留过去输入的记忆,根据新输入调节其行为,并能够处理可变长度的输入以增强神经网络的任务理解能力。强大的可适应性赋予了液态神经网络持续学习和适应的能力,并最终使其能够比传统神经网络更有效地处理时间序列数据。

一个连续时间神经网络是具有以下特点的神经网络 f f f
d x d t = f ( n , k , l t y p e ) ( x ( t ) , I ( t ) , θ ) \frac{dx}{dt} = f(n,k,l_{type})(x(t),I(t),\theta) dtdx=f(n,k,ltype)(x(t),I(t),θ)
其中

  • n n n: 层数
  • k k k: 宽度
  • l t y p e l_{type} ltype: 激活函数
  • x ( t ) x(t) x(t): 隐藏状态
  • I ( t ) I(t) I(t): 输入
  • θ \theta θ: 模型参数

如果 f f f 参数化了隐藏状态的导数,我们可以从离散的计算图转变为连续的时间图。这使得我们能够实现液态神经网络(LNN)的以下两个特性:

  1. 由于液态状态,可能的函数空间大大增加。
  2. 可以计算任意时间帧使得 LNN 非常适合序列数据处理。

为什么需要液态神经网络

过去的35年里,我们构建的都是基于数据和学习参数( θ \theta θ​)输出预测结果的概率模型。每个神经元都是一个逻辑回归门。将其与反向传播结合起来——一种基于模型损失重新训练参数权重的方法,就得到了神经网络。

然而,神经网络在现代世界中存在一些局限:

  1. 神经网络在单一任务上表现良好,但无法跨任务泛化知识,即具有固态性。
  2. 神经网络以非顺序方式处理数据,使其在处理实时数据时效率不高。

液态神经网络就是为了弥补传统神经网络的不足,它是一种在工作中学习的神经网络,不仅仅在训练阶段学习。液态神经网络提供了许多核心优势,包括:

  • 实时决策能力;
  • 快速响应各种数据分布;
  • 具有韧性,并能过滤异常或噪声数据;
  • 比黑箱机器学习算法具有更高的可解释性;
  • 降低计算成本。

LNN 与 RNN 的区别

  1. 神经元状态架构:在液态状态机(LSM)中,递归连接是随机生成并固定的。输入信号被送入这个随机连接的网络,网络对这些输入的响应进一步用于分类或预测等任务。
  2. 训练:递归神经网络(RNN)通常通过时序反向传播(BPTT)进行训练,而液态神经网络(LNN)通常依赖于一种称为“蓄水池计算”的无监督学习形式。在这种方法中,递归连接(蓄水池)是随机生成并保持固定的。只有读出层,即将蓄水池的动态映射到所需输出的层,使用监督学习技术进行训练。这使得 LSM 的训练相比于 RNN 来说更为简单。
  3. 梯度消失问题:由于固定的递归连接,LNN 通常被认为对参数变化更为稳健。
  4. 应用:RNN 非常适合顺序建模,而 LNN 可以用来解决各种任务,包括语音识别、机器人控制和时间模式识别等。

用 PyTorch 实现 LNN

在 PyTorch 中训练液态神经网络(LNN)包括如下步骤:定义网络架构、实现常微分方程(ODE)求解器和优化网络参数。下面我们一步一步在 PyTorch 中实现一个 LNN :

Step 1. 导入必要的库

import torch
import torch.nn as nn
import torch.optim as opt
import numpy as np

Step 2. 定义网络架构

LNN 由一系列层组成,每一层对输入应用非线性变换。每层的输出都会通过一个 Leaky ReLU 激活函数,该函数有助于在网络中引入非线性。

class LiquidNeuralNetwork(nn.Module):def __init__(self, input_size, hidden_size, num_layers):super(LiquidNeuralNetwork,self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.layers = nn.ModuleList([self._create_layer(input_size,hidden_size) for _inrange(num_layers)])def _create_layer(self, input_size, hidden_size):return nn.Sequential(nn.Linear(input_size, hidden_size),nn.LeakyReLU(),nn.Linear(hidden_size, hidden_size))def forward(self,x):for i, layer in enumerate(self.layers):x = layer(x)return x

Step 3. 实现 ODE 求解器

ODE 求解器负责根据输入数据更新网络的权重。我们可以使用 PyTorch 的自动微分系统(autograd)来实现 ODE 求解器。

class ODESolver(nn.Module):def __init__(self, model, dt):super(ODESolver, self).__init__()self.model = modelself.dt = dtdef forward(self, x):with torch.enable_grad():outputs = []for i, layer in enumerate(self.model):outputs.append(layer(x))x = outputs[-1]return xdef loss(self, x, t):with torch.enable_grad():outputs =[]for i,layer in enumerate(self.model):outputs.append(layer(x))x = outputs[-1]return x

Step 4. 定义训练逻辑

训练逻辑根据输入数据和 ODE 求解器来更新网络的权重。

def train(model, dataset, optimizer, epochs, batch_size):model.train()total_loss = 0for epoch in range(epochs):for batch in dataset:inputs,labels = batchoptimizer.zero_grad()outputs = model(inputs)loss = model.loss(inputs,outputs)loss.backward()optimizer.step()total_loss += loss.item()print(f'Epoch {epoch+1}, Loss:{total_loss /len(dataset)}')

LNN 的缺陷

虽然液态神经网络非常有用,但它们也存在一些不足,包括:

  • 在处理静态或固定数据时会遇到困难;
  • 由于梯度爆炸或消失,训练难度增加;
  • 由于梯度问题而在学习长期依赖性方面存在限制;
  • 缺乏对液态神经网络功能进行广泛研究;
  • 参数调整过程非常耗时;

这些问题需要通过进一步的研究和技术改进来解决,以便更好地利用液态神经网络的潜力。

总结

在人工智能领域,液态神经网络是最关键的新兴模型之一。

它与传统的深度学习神经网络并存,却更适合处理如自动驾驶汽车、温度或气候监测、股市评估等极其复杂的任务,而传统的深度学习神经网络则更擅长处理静态或一次性数据。

麻省理工学院的计算机科学与人工智能实验室(CSAIL)的研究人员一直在尝试将液态神经网络的能力扩展到更多的应用场景,但这需要时间。

液态神经网络和传统的深度学习神经网络在更广泛的人工智能领域中都有其确定的角色,二者配合使用其效果这绝对是 1+1>2。

这篇关于用 PyTorch 构建液态神经网络(LNN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949587

相关文章

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

maven 编译构建可以执行的jar包

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」👈,「stormsha的知识库」👈持续学习,不断总结,共同进步,为了踏实,做好当下事儿~ 专栏导航 Python系列: Python面试题合集,剑指大厂Git系列: Git操作技巧GO

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

利用命令模式构建高效的手游后端架构

在现代手游开发中,后端架构的设计对于支持高并发、快速迭代和复杂游戏逻辑至关重要。命令模式作为一种行为设计模式,可以有效地解耦请求的发起者与接收者,提升系统的可维护性和扩展性。本文将深入探讨如何利用命令模式构建一个强大且灵活的手游后端架构。 1. 命令模式的概念与优势 命令模式通过将请求封装为对象,使得请求的发起者和接收者之间的耦合度降低。这种模式的主要优势包括: 解耦请求发起者与处理者

Jenkins构建Maven聚合工程,指定构建子模块

一、设置单独编译构建子模块 配置: 1、Root POM指向父pom.xml 2、Goals and options指定构建模块的参数: mvn -pl project1/project1-son -am clean package 单独构建project1-son项目以及它所依赖的其它项目。 说明: mvn clean package -pl 父级模块名/子模块名 -am参数

JAVA用最简单的方法来构建一个高可用的服务端,提升系统可用性

一、什么是提升系统的高可用性 JAVA服务端,顾名思义就是23体验网为用户提供服务的。停工时间,就是不能向用户提供服务的时间。高可用,就是系统具有高度可用性,尽量减少停工时间。如何用最简单的方法来搭建一个高效率可用的服务端JAVA呢? 停工的原因一般有: 服务器故障。例如服务器宕机,服务器网络出现问题,机房或者机架出现问题等;访问量急剧上升,导致服务器压力过大导致访问量急剧上升的原因;时间和

利用Django框架快速构建Web应用:从零到上线

随着互联网的发展,Web应用的需求日益增长,而Django作为一个高级的Python Web框架,以其强大的功能和灵活的架构,成为了众多开发者的选择。本文将指导你如何从零开始使用Django框架构建一个简单的Web应用,并将其部署到线上,让世界看到你的作品。 Django简介 Django是由Adrian Holovaty和Simon Willison于2005年开发的一个开源框架,旨在简

828华为云征文|华为云Flexus X实例docker部署rancher并构建k8s集群

828华为云征文|华为云Flexus X实例docker部署rancher并构建k8s集群 华为云最近正在举办828 B2B企业节,Flexus X实例的促销力度非常大,特别适合那些对算力性能有高要求的小伙伴。如果你有自建MySQL、Redis、Nginx等服务的需求,一定不要错过这个机会。赶紧去看看吧! 什么是华为云Flexus X实例 华为云Flexus X实例云服务是新一代开箱即用、体