Spatial Transformer Networks(STN)代码分析

2024-04-30 17:48

本文主要是介绍Spatial Transformer Networks(STN)代码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是比较早的关于 attention的 文章了。

早且作用大,效果也不错。

关于这篇文章的解读有很多,一找一大堆,就不再赘述。

首先看看文章的解读,看懂原理,然后找到代码,对着看看,明白之后就自己会改了,就可以用到自己需要的地方了。

例如,文章解说和代码可参考:
一个文章解说地址
一个code地址

简单来说,就是在分类之前,先将原图作用于一个变换矩阵得到新的图,再去分类。

所以核心就是
1、得到变换矩阵,一个2*3的矩阵,可以实现平移缩放旋转裁剪等操作。
2、通过变换矩阵得到射变换前后的坐标的映射关系,即grid。
2、原图作用于grid之后得到新图,再卷积输出分类。

一个使用代码如下:


class STNSVHNet(nn.Module):def __init__(self, spatial_dim,in_channels, stn_kernel_size, kernel_size, num_classes=10, use_dropout=False):super(STNSVHNet, self).__init__()self._in_ch = in_channels self._ksize = kernel_size self._sksize = stn_kernel_sizeself.ncls = num_classes self.dropout = use_dropout self.drop_prob = 0.5self.stride = 1 self.spatial_dim = spatial_dimself.stnmod = STNModule.SpatialTransformer(self._in_ch, self.spatial_dim, self._sksize)self.conv1 = nn.Conv2d(self._in_ch, 32, kernel_size=self._ksize, stride=self.stride, padding=1, bias=False)self.conv2 = nn.Conv2d(32, 64, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.conv3 = nn.Conv2d(64, 128, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.fc1 = nn.Linear(128*4*4, 3092)self.fc2 = nn.Linear(3092, self.ncls)def forward(self, x):rois, affine_grid = self.stnmod(x)out = F.relu(self.conv1(rois))out = F.max_pool2d(out, 2)out = F.relu(self.conv2(out))out = F.max_pool2d(out, 2)out = F.relu(self.conv3(out))out = out.view(-1, 128*4*4)if self.dropout:out = F.dropout(self.fc1(out), p=0.5)else:out = self.fc1(out)out = self.fc2(out)return out

被调用的STN代如下:


class SpatialTransformer(nn.Module):"""Implements a spatial transformer as proposed in the Jaderberg paper. Comprises of 3 parts:1. Localization Net2. A grid generator 3. A roi pooled module.The current implementation uses a very small convolutional net with 2 convolutional layers and 2 fully connected layers. Backends can be swapped in favor of VGG, ResNets etc. TTMVReturns:A roi feature map with the same input spatial dimension as the input feature map. """def __init__(self, in_channels, spatial_dims, kernel_size,use_dropout=False):super(SpatialTransformer, self).__init__()self._h, self._w = spatial_dims self._in_ch = in_channels self._ksize = kernel_sizeself.dropout = use_dropout# localization net self.conv1 = nn.Conv2d(in_channels, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False) # size : [1x3x32x32]self.conv2 = nn.Conv2d(32, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.conv3 = nn.Conv2d(32, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.conv4 = nn.Conv2d(32, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.fc1 = nn.Linear(32*4*4, 1024)self.fc2 = nn.Linear(1024, 6)def forward(self, x): """Forward pass of the STN module. x -> input feature map """batch_images = xx = F.relu(self.conv1(x.detach()))x = F.relu(self.conv2(x))x = F.max_pool2d(x, 2)x = F.relu(self.conv3(x))x = F.max_pool2d(x,2)x = F.relu(self.conv3(x))x = F.max_pool2d(x, 2)print("Pre view size:{}".format(x.size()))x = x.view(-1, 32*4*4)if self.dropout:x = F.dropout(self.fc1(x), p=0.5)x = F.dropout(self.fc2(x), p=0.5)else:x = self.fc1(x)x = self.fc2(x) # params [Nx6]x = x.view(-1, 2,3) # change it to the 2x3 matrix print(x.size())affine_grid_points = F.affine_grid(x, torch.Size((x.size(0), self._in_ch, self._h, self._w)))assert(affine_grid_points.size(0) == batch_images.size(0)), "The batch sizes of the input images must be same as the generated grid."rois = F.grid_sample(batch_images, affine_grid_points)print("rois found to be of size:{}".format(rois.size()))return rois, affine_grid_points

核心代码就两句

affine_grid_points = F.affine_grid(x, torch.Size((x.size(0), self._in_ch, self._h, self._w)))
rois = F.grid_sample(batch_images, affine_grid_points)

可以参考这个理解一下:
Pytorch中的仿射变换(affine_grid)

  • batch_images:是原图
  • X:是2*3的变换矩阵,是原图经过一系列卷积等网络结构得到。
  • X后面的参数:表示在仿射变换中的输出的shape,其格式 [N, C, H, W],这里使得输出的size大小维度和原图一致。
  • F.affine_grid:即affine_grid_points 是得到仿射变换前后的坐标的映射关系。返回Shape为 [N, H, W, 2] 的4-D Tensor,表示其中,N、H、W分别为仿射变换中输出feature map的batch size、高和宽。
  • grid_sample:就是将映射关系作用于原图,得到新的图,再将新图进行卷积等操作,输出即可。

因为是有监督学习,所以X会自己学习得到。后面就都有了。

这篇关于Spatial Transformer Networks(STN)代码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949519

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例