Spatial Transformer Networks(STN)代码分析

2024-04-30 17:48

本文主要是介绍Spatial Transformer Networks(STN)代码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是比较早的关于 attention的 文章了。

早且作用大,效果也不错。

关于这篇文章的解读有很多,一找一大堆,就不再赘述。

首先看看文章的解读,看懂原理,然后找到代码,对着看看,明白之后就自己会改了,就可以用到自己需要的地方了。

例如,文章解说和代码可参考:
一个文章解说地址
一个code地址

简单来说,就是在分类之前,先将原图作用于一个变换矩阵得到新的图,再去分类。

所以核心就是
1、得到变换矩阵,一个2*3的矩阵,可以实现平移缩放旋转裁剪等操作。
2、通过变换矩阵得到射变换前后的坐标的映射关系,即grid。
2、原图作用于grid之后得到新图,再卷积输出分类。

一个使用代码如下:


class STNSVHNet(nn.Module):def __init__(self, spatial_dim,in_channels, stn_kernel_size, kernel_size, num_classes=10, use_dropout=False):super(STNSVHNet, self).__init__()self._in_ch = in_channels self._ksize = kernel_size self._sksize = stn_kernel_sizeself.ncls = num_classes self.dropout = use_dropout self.drop_prob = 0.5self.stride = 1 self.spatial_dim = spatial_dimself.stnmod = STNModule.SpatialTransformer(self._in_ch, self.spatial_dim, self._sksize)self.conv1 = nn.Conv2d(self._in_ch, 32, kernel_size=self._ksize, stride=self.stride, padding=1, bias=False)self.conv2 = nn.Conv2d(32, 64, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.conv3 = nn.Conv2d(64, 128, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.fc1 = nn.Linear(128*4*4, 3092)self.fc2 = nn.Linear(3092, self.ncls)def forward(self, x):rois, affine_grid = self.stnmod(x)out = F.relu(self.conv1(rois))out = F.max_pool2d(out, 2)out = F.relu(self.conv2(out))out = F.max_pool2d(out, 2)out = F.relu(self.conv3(out))out = out.view(-1, 128*4*4)if self.dropout:out = F.dropout(self.fc1(out), p=0.5)else:out = self.fc1(out)out = self.fc2(out)return out

被调用的STN代如下:


class SpatialTransformer(nn.Module):"""Implements a spatial transformer as proposed in the Jaderberg paper. Comprises of 3 parts:1. Localization Net2. A grid generator 3. A roi pooled module.The current implementation uses a very small convolutional net with 2 convolutional layers and 2 fully connected layers. Backends can be swapped in favor of VGG, ResNets etc. TTMVReturns:A roi feature map with the same input spatial dimension as the input feature map. """def __init__(self, in_channels, spatial_dims, kernel_size,use_dropout=False):super(SpatialTransformer, self).__init__()self._h, self._w = spatial_dims self._in_ch = in_channels self._ksize = kernel_sizeself.dropout = use_dropout# localization net self.conv1 = nn.Conv2d(in_channels, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False) # size : [1x3x32x32]self.conv2 = nn.Conv2d(32, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.conv3 = nn.Conv2d(32, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.conv4 = nn.Conv2d(32, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.fc1 = nn.Linear(32*4*4, 1024)self.fc2 = nn.Linear(1024, 6)def forward(self, x): """Forward pass of the STN module. x -> input feature map """batch_images = xx = F.relu(self.conv1(x.detach()))x = F.relu(self.conv2(x))x = F.max_pool2d(x, 2)x = F.relu(self.conv3(x))x = F.max_pool2d(x,2)x = F.relu(self.conv3(x))x = F.max_pool2d(x, 2)print("Pre view size:{}".format(x.size()))x = x.view(-1, 32*4*4)if self.dropout:x = F.dropout(self.fc1(x), p=0.5)x = F.dropout(self.fc2(x), p=0.5)else:x = self.fc1(x)x = self.fc2(x) # params [Nx6]x = x.view(-1, 2,3) # change it to the 2x3 matrix print(x.size())affine_grid_points = F.affine_grid(x, torch.Size((x.size(0), self._in_ch, self._h, self._w)))assert(affine_grid_points.size(0) == batch_images.size(0)), "The batch sizes of the input images must be same as the generated grid."rois = F.grid_sample(batch_images, affine_grid_points)print("rois found to be of size:{}".format(rois.size()))return rois, affine_grid_points

核心代码就两句

affine_grid_points = F.affine_grid(x, torch.Size((x.size(0), self._in_ch, self._h, self._w)))
rois = F.grid_sample(batch_images, affine_grid_points)

可以参考这个理解一下:
Pytorch中的仿射变换(affine_grid)

  • batch_images:是原图
  • X:是2*3的变换矩阵,是原图经过一系列卷积等网络结构得到。
  • X后面的参数:表示在仿射变换中的输出的shape,其格式 [N, C, H, W],这里使得输出的size大小维度和原图一致。
  • F.affine_grid:即affine_grid_points 是得到仿射变换前后的坐标的映射关系。返回Shape为 [N, H, W, 2] 的4-D Tensor,表示其中,N、H、W分别为仿射变换中输出feature map的batch size、高和宽。
  • grid_sample:就是将映射关系作用于原图,得到新的图,再将新图进行卷积等操作,输出即可。

因为是有监督学习,所以X会自己学习得到。后面就都有了。

这篇关于Spatial Transformer Networks(STN)代码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949519

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An