Spatial Transformer Networks(STN)代码分析

2024-04-30 17:48

本文主要是介绍Spatial Transformer Networks(STN)代码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是比较早的关于 attention的 文章了。

早且作用大,效果也不错。

关于这篇文章的解读有很多,一找一大堆,就不再赘述。

首先看看文章的解读,看懂原理,然后找到代码,对着看看,明白之后就自己会改了,就可以用到自己需要的地方了。

例如,文章解说和代码可参考:
一个文章解说地址
一个code地址

简单来说,就是在分类之前,先将原图作用于一个变换矩阵得到新的图,再去分类。

所以核心就是
1、得到变换矩阵,一个2*3的矩阵,可以实现平移缩放旋转裁剪等操作。
2、通过变换矩阵得到射变换前后的坐标的映射关系,即grid。
2、原图作用于grid之后得到新图,再卷积输出分类。

一个使用代码如下:


class STNSVHNet(nn.Module):def __init__(self, spatial_dim,in_channels, stn_kernel_size, kernel_size, num_classes=10, use_dropout=False):super(STNSVHNet, self).__init__()self._in_ch = in_channels self._ksize = kernel_size self._sksize = stn_kernel_sizeself.ncls = num_classes self.dropout = use_dropout self.drop_prob = 0.5self.stride = 1 self.spatial_dim = spatial_dimself.stnmod = STNModule.SpatialTransformer(self._in_ch, self.spatial_dim, self._sksize)self.conv1 = nn.Conv2d(self._in_ch, 32, kernel_size=self._ksize, stride=self.stride, padding=1, bias=False)self.conv2 = nn.Conv2d(32, 64, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.conv3 = nn.Conv2d(64, 128, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.fc1 = nn.Linear(128*4*4, 3092)self.fc2 = nn.Linear(3092, self.ncls)def forward(self, x):rois, affine_grid = self.stnmod(x)out = F.relu(self.conv1(rois))out = F.max_pool2d(out, 2)out = F.relu(self.conv2(out))out = F.max_pool2d(out, 2)out = F.relu(self.conv3(out))out = out.view(-1, 128*4*4)if self.dropout:out = F.dropout(self.fc1(out), p=0.5)else:out = self.fc1(out)out = self.fc2(out)return out

被调用的STN代如下:


class SpatialTransformer(nn.Module):"""Implements a spatial transformer as proposed in the Jaderberg paper. Comprises of 3 parts:1. Localization Net2. A grid generator 3. A roi pooled module.The current implementation uses a very small convolutional net with 2 convolutional layers and 2 fully connected layers. Backends can be swapped in favor of VGG, ResNets etc. TTMVReturns:A roi feature map with the same input spatial dimension as the input feature map. """def __init__(self, in_channels, spatial_dims, kernel_size,use_dropout=False):super(SpatialTransformer, self).__init__()self._h, self._w = spatial_dims self._in_ch = in_channels self._ksize = kernel_sizeself.dropout = use_dropout# localization net self.conv1 = nn.Conv2d(in_channels, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False) # size : [1x3x32x32]self.conv2 = nn.Conv2d(32, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.conv3 = nn.Conv2d(32, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.conv4 = nn.Conv2d(32, 32, kernel_size=self._ksize, stride=1, padding=1, bias=False)self.fc1 = nn.Linear(32*4*4, 1024)self.fc2 = nn.Linear(1024, 6)def forward(self, x): """Forward pass of the STN module. x -> input feature map """batch_images = xx = F.relu(self.conv1(x.detach()))x = F.relu(self.conv2(x))x = F.max_pool2d(x, 2)x = F.relu(self.conv3(x))x = F.max_pool2d(x,2)x = F.relu(self.conv3(x))x = F.max_pool2d(x, 2)print("Pre view size:{}".format(x.size()))x = x.view(-1, 32*4*4)if self.dropout:x = F.dropout(self.fc1(x), p=0.5)x = F.dropout(self.fc2(x), p=0.5)else:x = self.fc1(x)x = self.fc2(x) # params [Nx6]x = x.view(-1, 2,3) # change it to the 2x3 matrix print(x.size())affine_grid_points = F.affine_grid(x, torch.Size((x.size(0), self._in_ch, self._h, self._w)))assert(affine_grid_points.size(0) == batch_images.size(0)), "The batch sizes of the input images must be same as the generated grid."rois = F.grid_sample(batch_images, affine_grid_points)print("rois found to be of size:{}".format(rois.size()))return rois, affine_grid_points

核心代码就两句

affine_grid_points = F.affine_grid(x, torch.Size((x.size(0), self._in_ch, self._h, self._w)))
rois = F.grid_sample(batch_images, affine_grid_points)

可以参考这个理解一下:
Pytorch中的仿射变换(affine_grid)

  • batch_images:是原图
  • X:是2*3的变换矩阵,是原图经过一系列卷积等网络结构得到。
  • X后面的参数:表示在仿射变换中的输出的shape,其格式 [N, C, H, W],这里使得输出的size大小维度和原图一致。
  • F.affine_grid:即affine_grid_points 是得到仿射变换前后的坐标的映射关系。返回Shape为 [N, H, W, 2] 的4-D Tensor,表示其中,N、H、W分别为仿射变换中输出feature map的batch size、高和宽。
  • grid_sample:就是将映射关系作用于原图,得到新的图,再将新图进行卷积等操作,输出即可。

因为是有监督学习,所以X会自己学习得到。后面就都有了。

这篇关于Spatial Transformer Networks(STN)代码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949519

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号