西瓜书学习——决策树形状、熵和决策树的本质

2024-04-30 15:44

本文主要是介绍西瓜书学习——决策树形状、熵和决策树的本质,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 决策树形状
    • 监督学习算法
    • 分类与回归
    • 信息熵
    • 香农熵 (Shannon Entropy) - H(X)
    • 联合熵 (Joint Entropy) - H(X, Y)
    • 条件熵 (Conditional Entropy) - H(Y|X)
    • 互信息 (Mutual Information) - I(X; Y)
    • 相对熵 (Relative Entropy) / KL散度 (Kullback-Leibler Divergence) - DKL(P||Q)
    • 交叉熵 (Cross-Entropy) - H(P, Q)
    • 相互关系
    • H(Y) 和 H(Y|X)
      • H(Y)
      • H(Y|X)
      • 理解关系
  • 决策树的本质
      • 损失函数:总信息熵
      • 梯度:信息增益
      • 决策树:梯度下降路径
      • 非参数模型

决策树形状

在这里插入图片描述

内部节点:每个内部节点代表一个特征属性。在决策树构建过程中,根据某种准则(如信息增益、基尼不纯度等)选择最优的特征属性作为节点的判断标准。数据集在每个内部节点处根据特征属性的取值被分割成子集,从而实现了数据的划分。

叶子节点:每个叶子节点代表一个决策结果。在分类任务中,叶子节点通常表示一个类别标签,而在回归任务中,叶子节点表示一个连续的输出值。叶子节点的决策结果是通过训练数据集上的多数投票(分类)或平均值(回归)得到的。

监督学习算法

决策树是一种监督学习算法,因为它需要带有标签的训练数据集来构建模型。在训练过程中,决策树算法学习如何根据输入特征来预测输出标签。

分类与回归

  • 分类树:用于分类任务的决策树。每个叶子节点代表一个类别,模型的输出是预测数据点属于哪个类别。
  • 回归树:用于回归任务的决策树。每个叶子节点代表一个连续值,模型的输出是预测数据点的连续值。

无论是分类还是回归,决策树都是通过递归地划分数据集来构建的。在分类树中,通常使用信息增益、增益率或基尼不纯度来选择最优的特征属性;而在回归树中,通常使用最小二乘回归树的方法来选择最优的特征属性和分割点。

决策树的一个优点是它们易于理解,因为它们的决策过程可以通过可视化来直观展示。然而,决策树也容易过拟合,特别是当树的结构非常深时。为了避免过拟合,可以采用剪枝技术,如预剪枝和后剪枝,来限制树的复杂度。此外,决策树的一个变体是随机森林,它通过集成多个决策树来提高模型的泛化能力。

信息熵

信息熵可以理解为信息含量的度量,熵越高,信息含量越大,不确定性也越大。对于离散随机变量,其熵可以通过以下公式计算:

H ( X ) = − ∑ i = 1 n p ( x i ) log ⁡ b p ( x i ) H(X) = -\sum_{i=1}^{n} p(x_i) \log_b p(x_i) H(X)=i=1np(xi)logbp(xi)

其中, H ( X ) H(X) H(X) 是随机变量 X X X 的熵, p ( x i ) p(x_i) p(xi) 是随机变量 X X X 取值为 x i x_i xi 的概率, n n n是随机变量 X X X 的所有可能取值的个数, b b b 是计算熵时使用的底数,通常取 2、e或 10,分别对应于以比特、纳特或十特为单位的熵。

假设我们有一个公平的六面骰子。我们想要知道掷骰子时得到的信息量。每个面出现的概率都是 1/6,因此我们可以计算这个随机事件的熵。

首先,我们选择以2为底数(这样可以计算以比特为单位的熵),然后应用熵的公式:

H ( X ) = − ∑ i = 1 6 p ( x i ) log ⁡ 2 p ( x i ) H(X) = -\sum_{i=1}^{6} p(x_i) \log_2 p(x_i) H(X)=i=16p(xi)log2p(xi)

其中 p ( x i ) = 1 / 6 p(x_i) = 1/6 p(xi)=1/6 对于所有的 i i i(因为每个面出现的概率是相等的)。
H ( X ) = − 6 × 1 6 log ⁡ 2 1 6 H ( X ) = − log ⁡ 2 1 6 H ( X ) = log ⁡ 2 6 H ( X ) ≈ 2.585 H(X) = -6 \times \frac{1}{6} \log_2 \frac{1}{6} \\ H(X) = -\log_2 \frac{1}{6} \\ H(X) = \log_2 6 \\ H(X) \approx 2.585 H(X)=6×61log261H(X)=log261H(X)=log26H(X)2.585

所以,一个公平的六面骰子的信息熵大约是 2.585 比特。这意味着每次掷骰子时,你得到的信息量大约是 2.585 比特。

现在,如果我们考虑一个不公平的骰子,其中某个面出现的概率更高,那么这个面的信息量就会减少(因为你已经预期它更可能出现),从而降低整个系统的熵。相反,如果所有面出现的概率相等,熵就会更高,因为每个结果都是同样不可预测的。

香农熵 (Shannon Entropy) - H(X)

香农熵是衡量单个随机变量不确定性的度量。对于离散随机变量 X X X,其香农熵定义为:

H ( X ) = − ∑ i p ( x i ) log ⁡ b p ( x i ) H(X) = -\sum_{i} p(x_i) \log_b p(x_i) H(X)=ip(xi)logbp(xi)

其中, p ( x i ) p(x_i) p(xi)是随机变量 X 取值为 x i x_i xi的概率, b b b是底数(通常取 2、e 或 10)。

联合熵 (Joint Entropy) - H(X, Y)

联合熵是衡量两个或多个随机变量共同发生的不确定性的度量。对于两个随机变量 X X X Y Y Y,其联合熵定义为:

H ( X , Y ) = − ∑ x , y p ( x , y ) log ⁡ b p ( x , y ) H(X, Y) = -\sum_{x, y} p(x, y) \log_b p(x, y) H(X,Y)=x,yp(x,y)logbp(x,y)

其中, p ( x , y ) p(x, y) p(x,y) X X X Y Y Y 同时取值为 x x x y y y的联合概率。

条件熵 (Conditional Entropy) - H(Y|X)

条件熵是在已知一个随机变量的情况下,另一个随机变量的不确定性的度量。对于随机变量 Y Y Y 在已知 X X X 的情况下的条件熵定义为:

H ( Y ∣ X ) = ∑ x p ( x ) H ( Y ∣ X = x ) H(Y|X) = \sum_{x} p(x) H(Y|X=x) H(YX)=xp(x)H(YX=x)

其中, H ( Y ∣ X = x ) H(Y|X=x) H(YX=x)是在 X X X 取值为 x x x 的条件下 Y Y Y的条件熵。

互信息 (Mutual Information) - I(X; Y)

互信息是衡量两个随机变量之间相互依赖性的度量。互信息定义为:

I ( X ; Y ) = H ( Y ) − H ( Y ∣ X ) I(X; Y) = H(Y) - H(Y|X) I(X;Y)=H(Y)H(YX)

互信息也可以表示为联合熵和单独熵的差:

I ( X ; Y ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X; Y) = H(X) + H(Y) - H(X, Y) I(X;Y)=H(X)+H(Y)H(X,Y)

相对熵 (Relative Entropy) / KL散度 (Kullback-Leibler Divergence) - DKL(P||Q)

相对熵,也称为KL散度,是衡量两个概率分布之间差异的度量。对于两个概率分布 P P P Q Q Q,KL散度定义为:

D K L ( P ∣ ∣ Q ) = ∑ i P ( i ) log ⁡ P ( i ) Q ( i ) D_{KL}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)} DKL(P∣∣Q)=iP(i)logQ(i)P(i)

KL散度是非负的,并且不是对称的,即 D K L ( P ∣ ∣ Q ) ≠ D K L ( Q ∣ ∣ P ) D_{KL}(P||Q) \neq D_{KL}(Q||P) DKL(P∣∣Q)=DKL(Q∣∣P)

交叉熵 (Cross-Entropy) - H(P, Q)

交叉熵是衡量两个概率分布之间差异的另一种度量。对于概率分布 P P P Q Q Q,交叉熵定义为:

H ( P , Q ) = − ∑ i P ( i ) log ⁡ Q ( i ) H(P, Q) = -\sum_{i} P(i) \log Q(i) H(P,Q)=iP(i)logQ(i)

交叉熵可以用来衡量 Q Q Q 分布与 P P P 分布之间的差异。

相互关系

  • 互信息 I ( X ; Y ) I(X; Y) I(X;Y) 可以看作是 X X X Y Y Y 共享的信息量,或者是在知道 X X X 的值后 Y Y Y 的不确定性的减少量。

  • 条件熵 H ( Y ∣ X ) H(Y|X) H(YX) 可以通过香农熵 H ( Y ) H(Y) H(Y) 减去互信息 I ( X ; Y ) I(X; Y) I(X;Y) 来计算。

  • KL散度 D K L ( P ∣ ∣ Q ) DKL(P||Q) DKL(P∣∣Q) 可以通过交叉熵 H ( P , Q ) H(P, Q) H(P,Q) 减去 P P P 的熵 H ( P ) H(P) H(P) 来计算。

这些熵和散度在机器学习、数据科学和通信理论中有着广泛的应用,用于量化不确定性、优化模型、评估模型性能以及比较概率分布。

H(Y) 和 H(Y|X)

H(Y)

H ( Y ) H(Y) H(Y) 是随机变量 Y Y Y 的无条件熵,它衡量的是 Y Y Y 本身的不确定性。换句话说, H ( Y ) H(Y) H(Y) 告诉我们在没有任何其他信息的情况下,随机变量 Y Y Y 的取值有多么不可预测。无条件熵越大, Y Y Y 的取值就越分散,我们也就越难准确预测 Y 的具体取值。

H ( Y ) H(Y) H(Y) 的计算公式是:

H ( Y ) = − ∑ y ∈ Y p ( y ) log ⁡ b p ( y ) H(Y) = -\sum_{y \in Y} p(y) \log_b p(y) H(Y)=yYp(y)logbp(y)

其中, p ( y ) p(y) p(y) 是随机变量 Y Y Y 取值为 y y y 的概率, b b b 是计算熵时使用的底数(通常取 2、e 或 10)。

H(Y|X)

H ( Y ∣ X ) H(Y|X) H(YX) 是在已知随机变量 X X X 的取值的情况下,随机变量 Y Y Y 的条件熵。它衡量的是在已经知道 X X X 的信息后, Y Y Y 的不确定性还有多少。如果 X X X Y Y Y 完全独立,那么知道 X X X 的取值不会对 Y Y Y 的不确定性产生影响, H ( Y ∣ X ) H(Y|X) H(YX) 将等于 H ( Y ) H(Y) H(Y)。如果 X X X Y Y Y 完全相关,那么一旦知道了 X X X 的取值, Y Y Y 的取值也就确定了,此时 H ( Y ∣ X ) H(Y|X) H(YX) 将为 0。

H ( Y ∣ X ) H(Y|X) H(YX) 的计算公式是:

H ( Y ∣ X ) = ∑ x ∈ X p ( x ) H ( Y ∣ X = x ) H(Y|X) = \sum_{x \in X} p(x) H(Y|X=x) H(YX)=xXp(x)H(YX=x)

其中, p ( x ) p(x) p(x) 是随机变量 X X X 取值为 x x x 的概率, H ( Y ∣ X = x ) H(Y|X=x) H(YX=x) 是在 X X X 取值为 x x x 的条件下 Y Y Y 的条件熵,其计算公式为:

H ( Y ∣ X = x ) = − ∑ y ∈ Y p ( y ∣ x ) log ⁡ b p ( y ∣ x ) H(Y|X=x) = -\sum_{y \in Y} p(y|x) \log_b p(y|x) H(YX=x)=yYp(yx)logbp(yx)

其中, p ( y ∣ x ) p(y|x) p(yx) 是在 X X X 取值为 x x x 的条件下, Y Y Y 取值为 y y y 的条件概率。

理解关系

H ( Y ) H(Y) H(Y) H ( Y ∣ X ) H(Y|X) H(YX) 之间的关系可以通过互信息 I ( X ; Y ) I(X;Y) I(X;Y) 来理解,互信息衡量的是知道 X X X 的值后 Y Y Y 的不确定性的减少量。互信息 I ( X ; Y ) I(X;Y) I(X;Y) 可以表示为:

I ( X ; Y ) = H ( Y ) − H ( Y ∣ X ) I(X;Y) = H(Y) - H(Y|X) I(X;Y)=H(Y)H(YX)

这也可以写作:

I ( X ; Y ) = H ( Y ) − H ( Y ∣ X ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X;Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X,Y) I(X;Y)=H(Y)H(YX)=H(X)+H(Y)H(X,Y)

互信息 I ( X ; Y ) I(X;Y) I(X;Y) 描述了知道 X X X 的值后 Y Y Y 的不确定性的减少量。如果 X X X Y Y Y 完全独立,那么 I ( X ; Y ) = 0 ; I(X;Y) = 0; I(X;Y)=0如果 X X X Y Y Y 完全相关,那么 I ( X ; Y ) = H ( Y ) I(X;Y) = H(Y) I(X;Y)=H(Y)

决策树的本质

损失函数:总信息熵

决策树的构建是一个递归的过程,每次选择最优的特征来分割数据集,直到满足停止条件。在这个过程中,我们需要一个准则来衡量分割的好坏,这个准则就是损失函数。在决策树中,常用的损失函数是总信息熵(Overall Information Entropy),它衡量的是数据集的不确定性。我们希望每次分割都能最大程度地减少数据集的不确定性,从而提高模型的预测准确性。

信息熵是由香农提出的,用于衡量一个随机变量的不确定性。在决策树中,我们通常使用信息熵来衡量数据集的不确定性。数据集的信息熵定义为:

H ( D ) = − ∑ i = 1 n p i log ⁡ 2 p i H(D) = -\sum_{i=1}^{n} p_i \log_2 p_i H(D)=i=1npilog2pi

其中, p i p_i pi 是数据集中第 i i i 类样本的比例。信息熵越大,数据集的不确定性越高。

梯度:信息增益

在机器学习中,梯度是损失函数的导数,它指向损失函数增加最快的方向。在决策树中,我们没有显式的梯度概念,但可以类比地引入“梯度”的概念,即信息增益(Information Gain),它衡量的是分割前后数据集信息熵的减少量。我们希望每次分割都能获得最大的信息增益,从而最大程度地减少数据集的不确定性。

信息增益的计算公式为:

I G ( D , A ) = H ( D ) − ∑ j = 1 m ∣ D j ∣ ∣ D ∣ H ( D j ) IG(D, A) = H(D) - \sum_{j=1}^{m} \frac{|D_j|}{|D|} H(D_j) IG(D,A)=H(D)j=1mDDjH(Dj)

其中, H ( D ) H(D) H(D)是数据集 D的信息熵, D j D_j Dj是数据集 D D D 在特征 A A A 的第 j j j 个取值下的子集, ∣ D j ∣ |D_j| Dj是子集 D j D_j Dj的样本数, ∣ D ∣ |D| D是数据集 D D D的样本数。

决策树:梯度下降路径

在构建决策树的过程中,我们每次选择最优的特征来分割数据集,这可以类比于梯度下降算法中的迭代优化过程。在梯度下降中,我们沿着梯度的反方向更新参数,以减小损失函数的值。

在决策树中,我们选择信息增益最大的特征进行分割,这可以看作是在沿着信息熵减少的方向优化,即“梯度下降路径”。

非参数模型

决策树是一种非参数模型,这意味着它不依赖于数据的分布假设,可以捕捉数据中的非线性关系。决策树的灵活性使得它适用于多种数据类型和任务,但它也容易过拟合,因此需要剪枝等技术来提高模型的泛化能力。

总结来说,决策树的本质是一种基于总信息熵的损失函数,通过信息增益来选择最优特征进行分割的梯度下降路径,它是一种灵活的非参数模型,可以捕捉数据中的复杂关系。

这篇关于西瓜书学习——决策树形状、熵和决策树的本质的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949262

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件