基于光伏电站真实数据集的深度学习预测模型(Python代码,深度学习五个模型)

本文主要是介绍基于光伏电站真实数据集的深度学习预测模型(Python代码,深度学习五个模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

效果视频链接:基于深度学习光伏预测系统(五个模型)_哔哩哔哩_bilibili

界面设计 

 注册界面

登录界面

主界面

展示界面

1.数据集来源

The SOLETE dataset

这里分别保存了不同间隔采样时间表格 

1min是以1min 间隔采集的数据集

数据集截图(开始位置截图)

 截止位置截图

2.关于特征与标签选择(在交通流量预测方面主要有以下两种方式,本文是第二种)

2.1.第一种方式如下图所示

每一行前9列(黄色部分) 作为特征输入,每一行的第10列值作为标签(红色部分) 

 2.2.第二种方式如下图所示

前6行的10列数据(黄色部分)作为特征输入,第7行的第10列数据(红色部分)为标签。 

根据已获取的历史数据预测下一个时间点或者未来多个时间点 更符合实际。

3.模型(LSTM;GRU;CNN-LSTM;CNN-GRU;LSTM_transform模型)评价指标

MAE;MSE;MAPE

LSTM 26.3020%; 0.5736% ;49.3607%
GRU 19.3869% ;0.1793%; 44.0200%
CNN-LSTM 16.0719% ;0.1367%; 39.5737%
CNN-GRU 17.2165%; 0.1541% ;41.5540%
LSTM_transform 15.9017%; 0.1385%; 39.7443%

4.效果图(测试集)

LSTM

GRU 

CNN-LSTM 

CNN-GRU 

 LSTM+transform

5. 对数据集和代码感兴趣的,可以关注最后一行

import sys
import numpy as np
from PIL import Image
from PyQt5.QtCore import Qt
from PyQt5.QtGui import QPainter,QPen,QImage,QPixmap,QFont,QPalette,QBrush
from PyQt5.QtWidgets import QWidget,QLabel,QPushButton,QLineEdit,QApplication,QMessageBox,QTableWidget,QTableWidgetItem
import matplotlib.pyplot as plt
import pandas as pd
#数据集和代码:https://mbd.pub/o/bread/ZpWVm5xv

这篇关于基于光伏电站真实数据集的深度学习预测模型(Python代码,深度学习五个模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/948226

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06