MATLAB 数据拟合 (使用 polyfit 多项式曲线拟合、polyval)

本文主要是介绍MATLAB 数据拟合 (使用 polyfit 多项式曲线拟合、polyval),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解决数据拟合问题最重要方法是最小二乘法和回归分析。如,我们需要从一组测定的数据(例如N个点(xi,yi)(i=0,1,…,m))去求得自变量 x 和因变量 y 的一个近似解表达式 y=f(x),这就是由给定的 N 个点(xi,yi)(i=0,1,…,m)求数据拟合的问题。(注意数据拟合和数据插值是不同的,举个例子:因为测量数据往往不可避免地带有测试误差,而插值多项式又通过所有的点(xi,yi),这样就使插值多项式保留了这些误差,从而影响逼近精度,使得插值效果不理想)
所以使用最小二乘法曲线拟合法:即寻求已知函数的一个逼近函数y=f(x),使得逼近函数从总体与已知函数的偏差按某种方法度量能达到最小,而又不一定通过全部的点(xi,yi),这个时候就需要使用最小二乘法曲线拟合法。
数据拟合的具体做法是:对给定的数据(xi,yi)(i=0,1,…,m),在取定的函数类 ϕ \phi ϕ中使误差 r i = p ( x i ) − y i ( i = 0 , 1 , … , m ) r_{i}=p\left(x_{i}\right)-y_{i}(i=0,1, \ldots, m) ri=p(xi)yi(i=0,1,,m)的平方和最小,即
[ ∑ i = 0 m r i 2 = ∑ i = 0 m [ p ( x i − y i ) ] 2 ] min ⁡ \left[\sum_{i=0}^{m} r_{i}^{2}=\sum_{i=0}^{m}\left[p\left(x_{i}-y_{i}\right)\right]^{2}\right]_{\min } [i=0mri2=i=0m[p(xiyi)]2]min
从几何意义讲,即寻求与给定点 x i − y i ( i = 0 , 1 , … , m ) x_{i}-y_{i}(i=0,1, \ldots, m) xiyi(i=0,1,,m) 的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类 ϕ \phi ϕ 可有不同的选取方法。
MATLAB工具箱中提供了最小二乘拟合函数 polyfit() -->多项式曲线拟合
具体调用格式有三种:

  1. P = polyfit(X,Y,N)
  2. [P,S] = polyfit(X,Y,N)
  3. [P,S,MU] = polyfit(X,Y,N)

(1)P = polyfit(X,Y,N) 返回次数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最小二乘方式中)。p 中的系数按降幂排列,p 的长度为 n+1.
其中 X 为输入的向量x,Y 为得到的函数值,N 表示拟合的最高次数,返回的P值为拟合的多项式:

P ( 1 ) × X n + P ( 2 ) × X n − 1 + … + P ( N ) × X + P ( N + 1 ) P(1) \times X^{n}+P(2) \times X^{n-1}+\ldots+P(N) \times X+P(N+1) P(1)×Xn+P(2)×Xn1++P(N)×X+P(N+1)

(2) [P,S] = polyfit(X,Y,N)还返回一个结构体 S,S可用作 polyval 的输入来获取误差估计值(S为由范德蒙矩阵的QR分解的R分量)。
其中 X 为输入的向量x,Y 为得到的函数值,N 表示拟合的最高次数,返回的P值为拟合的多项式:

P ( 1 ) × X n + P ( 2 ) × X n − 1 + … + P ( N ) × X + P ( N + 1 ) P(1) \times X^{n}+P(2) \times X^{n-1}+\ldots+P(N) \times X+P(N+1) P(1)×Xn+P(2)×Xn1++P(N)×X+P(N+1)

(3)[P,S,MU] = polyfit(X,Y,N)还返回 mu,mu是一个二元素向量,包含中心化值和缩放值。mu(1) 是 mean(x),mu(2) 是 std(x)。使用这些值时,polyfit 将 x 的中心置于零值处并缩放为具有单位标准差:

x ^ = x − x ˉ σ x \hat{x}=\frac{x-\bar{x}}{\sigma_{x}} x^=σxxxˉ

这种中心化和缩放变换可同时改善多项式和拟合算法的数值属性。

下面来看一些具体的例子:(来源于帮助文档,改编)

  • 将多项式与三角函数拟合:
    在区间 [0,4*pi] 中沿余弦曲线生成 10 个等间距的点。
>> x = linspace(0,4*pi,10);
>> y = cos(x);

使用 polyfit 将一个 7 次多项式与这些点拟合。

>> p = polyfit(x,y,7);

在更精细的网格上计算多项式并绘制结果图。

>> x1 = linspace(0,4*pi);
>> y1 = polyval(p,x1);
>> figure
>> plot(x,y,'o')
>> hold on
>> plot(x1,y1,'m')
>> hold off

运行结果如下:
在这里插入图片描述

  • 将多项式与点集拟合
    创建一个由区间 [0,1] 中的 5 个等间距点组成的向量,并计算这些点处的 y(x)= (2+x)^-1 。
>> x=0:0.2:1;   //或者写成  >> x=0:0.2:1;  也可以实现相同的作用
>> y = 1./(2+x);

将 4 次多项式与 5 个点拟合。通常,对于 n 个点,可以拟合 n-1 次多项式以便完全通过这些点。

>> p = polyfit(x,y,4);

在由 0 和 2 之间的点组成的更精细网格上计算原始函数和多项式拟合。

>> x1 = linspace(0,2);
>> y1 = 1./(2+x1);
>> f1 = polyval(p,x1);

在更大的区间 [0,2] 中绘制函数值和多项式拟合,其中包含用于获取以圆形突出显示的多项式拟合的点。多项式拟合在原始 [0,1] 区间中的效果较好,但在该区间外部很快与拟合函数出现差异。

>> figure
>> plot(x,y,'o')
>> hold on
>> plot(x1,y1)
>> plot(x1,f1,'b--')
>> legend('y','y1','f1')

运行结果如下:
在这里插入图片描述

  • 对误差函数进行多项式拟合:
    首先生成 x 点的向量,在区间 [0,1.5*pi] 内等间距分布;然后计算这些点处的 erf(x)。
    注:erf 是误差函数,也称高斯误差函数。
x = (0:0.10:1.5*pi)';y=erf(x);

确定6次逼近多项式的系数。

p=polyfit(x,y,6)

p =

0.0019   -0.0259    0.1242   -0.1785   -0.3442    1.2684   -0.0095

为了查看拟合情况如何,在各数据点处计算多项式,并生成说明数据、拟合和误差的一个表。

f=polyval(p,x);
T=table(x,y,f,y-f,'VariableNames',{'X','Y','Fit','FitError'})

T =

48×4 table

 X        Y          Fit         FitError  
___    _______    __________    ___________0          0    -0.0094811      0.0094811
0.1    0.11246       0.11375     -0.0012876
0.2     0.2227       0.22919     -0.0064911
0.3    0.32863       0.33619     -0.0075599
0.4    0.42839       0.43431      -0.005914
0.5     0.5205       0.52334     -0.0028408
0.6    0.60386       0.60326     0.00059392
0.7     0.6778        0.6742      0.0035981
0.8     0.7421       0.73643      0.0056695
0.9    0.79691       0.79033      0.00657941     0.8427       0.83637      0.0063316
1.1    0.88021        0.8751      0.0051058
1.2    0.91031       0.90712       0.003194
1.3    0.93401       0.93307     0.00093826
1.4    0.95229       0.95361      -0.001323
1.5    0.96611        0.9694     -0.0032971
...

在该区间中,插值与实际值非常符合。创建一个绘图,以显示在该区间以外,外插值与实际数据值如何快速偏离。

 x1=(0:0.10:2*pi)';y1=erf(x1);f1=polyval(p,x1);plot(x,y,'o')plot(x1,y1,'-')hold onplot(x1,y1,'-')plot(x1,f1,'g-')axis([0  5.5  0  3])

在这里插入图片描述

  • 使用中心化和缩放改善数值属性
    创建一个由 1750 - 2000 年的人口数据组成的表,并绘制数据点。
 year = (1750:25:2000)';pop = 1e6*[791 856 978 1050 1262 1544 1650 2532 6122 8170 11560]';T = table(year, pop)

T =

11×2 table

year       pop   
____    _________1750     7.91e+08
1775     8.56e+08
1800     9.78e+08
1825     1.05e+09
1850    1.262e+09
1875    1.544e+09
1900     1.65e+09
1925    2.532e+09
1950    6.122e+09
1975     8.17e+09
2000    1.156e+10
 plot(year,pop,'square')

在这里插入图片描述
使用带三个输入的 polyfit 拟合一个使用中心化和缩放的 5 次多项式,这将改善问题的数值属性。polyfit 将 year 中的数据以 0 为进行中心化,并缩放为具有标准差 1,这可避免在拟合计算中出现病态的 Vandermonde (范德蒙)矩阵。

[p,~,mu] = polyfit(T.year, T.pop, 5);

使用带四个输入的 polyval,根据缩放后的年份 (year-mu(1))/mu(2) 计算 p。绘制结果对原始年份的图。

f = polyval(p,year,[],mu);
hold on
plot(year,f)

在这里插入图片描述

  • 简单线性回归
    将一个简单线性回归模型与一组离散二维数据点拟合。
    创建几个由样本数据点 (x,y) 组成的向量。对数据进行一次多项式拟合。
>> x=1:40;
>> y=0.4*x-1.5*randn(1,60);
注意:这里 矩阵维度必须一致。 所以第二行代码的输入是错误的y=0.4*x-1.5*randn(1,40);p=polyfit(x,y,1);

计算在 x 中的点处拟合的多项式 p。用这些数据绘制得到的线性回归模型。

 f = polyval(p,x); plot(x,y,'o',x,f,'-')legend('data','linear fit')

在这里插入图片描述

  • 具有误差估计值的线性回归
    将一个线性模型拟合到一组数据点并绘制结果,其中包含预测区间为 95% 的估计值。
    创建几个由样本数据点 (x,y) 组成的向量。使用 polyfit 对数据进行一次多项式拟合。指定两个输出以返回线性拟合的系数以及误差估计结构体。
x = 1:100; 
y = -0.3*x + 2*randn(1,100); 
[p,S] = polyfit(x,y,1);

计算以 p 为系数的一次多项式在 x 中各点处的拟合值。将误差估计结构体指定为第三个输入,以便 polyval 计算标准误差的估计值。标准误差估计值在 delta 中返回。

[y_fit,delta] = polyval(p,x,S);

绘制原始数据、线性拟合和 95% 预测区间 y ± 2 Δ y \pm 2 \Delta y±2Δ

plot(x,y,'go')
hold on
plot(x,y_fit,'r-')
plot(x,y_fit+2*delta,'m--',x,y_fit-2*delta,'m--')
title('Linear Fit of Data with 95% Prediction Interval')
legend('Data','Linear Fit','95% Prediction Interval')

在这里插入图片描述

  • 输入参数解释:
  • x – 查询点 (向量)
    查询点,指定为一个向量。x 中的点对应于 y 中包含的拟合函数值。如果 x 不是向量,则 polyfit 将其转换为列向量 x( : )。😃
    x 具有重复(或接近重复)的点或者如果 x 可能需要中心化和缩放时的警告消息结果。
    **数据类型:**single | double
    复数支持:
  • y – 查询点位置的拟合值 (向量)
    查询点位置的拟合值,指定为向量。y 中的值对应于 x 中包含的查询点。如果 y 不是向量,则 polyfit 将其转换为列向量 y ( : ) 。😃
    **数据类型:**single | double
    复数支持:
  • n --多项式拟合的次数 (正整数标量)
    多项式拟合的次数,指定为正整数标量。n 指定 p 中最左侧系数的多项式幂
  • 输出参数解释:
  • p – 最小二乘拟合多项式系数(向量)

最小二乘拟合多项式系数,以向量的形式返回。p 的长度为 n+1,包含按降幂排列的多项式系数,最高幂为 n。如果 x 或 y 包含 NaN 值且 n < length(x),则 p 的所有元素均为 NaN。

使用 polyval 计算 p 在查询点处的解。

  • S – 误差估计结构体 (结构体)
    误差估计结构体。此可选输出结构体主要用作 polyval 函数的输入,以获取误差估计值。S 包含以下字段:
字段说明
RVandermonde 矩阵 x 的 QR 分解的三角因子
df自由度
normr残差的范数

如果 y 中的数据是随机的,则 p 的估计协方差矩阵是 (Rinv*Rinv’)*normr^2/df,其中 Rinv 是 R 的逆矩阵。

如果 y 中数据的误差呈独立正态分布,并具有常量方差,则 [y,delta] = polyval(…) 可生成至少包含 50% 的预测值的误差边界。即 y ± delta 至少包含 50% 对 x 处的未来观测值的预测值。

  • mu – 中心化值和缩放值

中心化值和缩放值,以二元素向量形式返回。mu(1) 为 mean(x),mu(2) 为 std(x)。这些值以单位标准差将 x 中的查询点的中心置于零值处。

使用 mu 作为 polyval 的第四个输入以计算 p 在缩放点 (x - mu(1))/mu(2) 处的解。

局限性

  • 在涉及很多点的问题中,使用 polyfit 增加多项式拟合的次数并不总能得到较好的拟合。高次多项式可以在数据点之间振动,导致与数据之间的拟合较差。在这些情况下,可使用低次多项式拟合(点之间倾向于更平滑)或不同的方法,具体取决于该问题。
  • 多项式在本质上是无边界的振荡函数。所以,它们并不非常适合外插有界的数据或单调(递增或递减)的数据。

算法:
polyfit 使用 x 构造具有 n+1 列和 m = length(x) 行的 Vandermonde 矩阵 V 并生成线性方程组
( x 1 n x 1 n − 1 … 1 n 2 x 2 − 1 … 1 ⋮ ⋮ ⋱ ⋮ n m x m − 1 … 1 ) ( p 1 p 2 ⋮ p n + 1 ) = ( y 1 y 2 ⋮ y m ) \left(\begin{array}{cccc} x_{1}^{n} & x_{1}^{n-1} & \ldots & 1 \\ n_{2} & x_{2}-1 & \ldots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ n_{m} & x_{m}-1 & \ldots & 1 \end{array}\right)\left(\begin{array}{c} p_{1} \\ p_{2} \\ \vdots \\ p_{n+1} \end{array}\right)=\left(\begin{array}{c} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{array}\right) x1nn2nmx1n1x21xm1111p1p2pn+1=y1y2ym

其中 polyfit 使用 p = V\y 求解。由于 Vandermonde 矩阵中的列是向量 x 的幂,因此条件数 V 对于高阶拟合来说通常较大,生成一个奇异系数矩阵。在这些情况下,中心化和缩放可改善系统的数值属性以产生更可靠的拟合。

这篇关于MATLAB 数据拟合 (使用 polyfit 多项式曲线拟合、polyval)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/948027

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传