MATLAB 数据拟合 (使用 polyfit 多项式曲线拟合、polyval)

本文主要是介绍MATLAB 数据拟合 (使用 polyfit 多项式曲线拟合、polyval),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

解决数据拟合问题最重要方法是最小二乘法和回归分析。如,我们需要从一组测定的数据(例如N个点(xi,yi)(i=0,1,…,m))去求得自变量 x 和因变量 y 的一个近似解表达式 y=f(x),这就是由给定的 N 个点(xi,yi)(i=0,1,…,m)求数据拟合的问题。(注意数据拟合和数据插值是不同的,举个例子:因为测量数据往往不可避免地带有测试误差,而插值多项式又通过所有的点(xi,yi),这样就使插值多项式保留了这些误差,从而影响逼近精度,使得插值效果不理想)
所以使用最小二乘法曲线拟合法:即寻求已知函数的一个逼近函数y=f(x),使得逼近函数从总体与已知函数的偏差按某种方法度量能达到最小,而又不一定通过全部的点(xi,yi),这个时候就需要使用最小二乘法曲线拟合法。
数据拟合的具体做法是:对给定的数据(xi,yi)(i=0,1,…,m),在取定的函数类 ϕ \phi ϕ中使误差 r i = p ( x i ) − y i ( i = 0 , 1 , … , m ) r_{i}=p\left(x_{i}\right)-y_{i}(i=0,1, \ldots, m) ri=p(xi)yi(i=0,1,,m)的平方和最小,即
[ ∑ i = 0 m r i 2 = ∑ i = 0 m [ p ( x i − y i ) ] 2 ] min ⁡ \left[\sum_{i=0}^{m} r_{i}^{2}=\sum_{i=0}^{m}\left[p\left(x_{i}-y_{i}\right)\right]^{2}\right]_{\min } [i=0mri2=i=0m[p(xiyi)]2]min
从几何意义讲,即寻求与给定点 x i − y i ( i = 0 , 1 , … , m ) x_{i}-y_{i}(i=0,1, \ldots, m) xiyi(i=0,1,,m) 的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类 ϕ \phi ϕ 可有不同的选取方法。
MATLAB工具箱中提供了最小二乘拟合函数 polyfit() -->多项式曲线拟合
具体调用格式有三种:

  1. P = polyfit(X,Y,N)
  2. [P,S] = polyfit(X,Y,N)
  3. [P,S,MU] = polyfit(X,Y,N)

(1)P = polyfit(X,Y,N) 返回次数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最小二乘方式中)。p 中的系数按降幂排列,p 的长度为 n+1.
其中 X 为输入的向量x,Y 为得到的函数值,N 表示拟合的最高次数,返回的P值为拟合的多项式:

P ( 1 ) × X n + P ( 2 ) × X n − 1 + … + P ( N ) × X + P ( N + 1 ) P(1) \times X^{n}+P(2) \times X^{n-1}+\ldots+P(N) \times X+P(N+1) P(1)×Xn+P(2)×Xn1++P(N)×X+P(N+1)

(2) [P,S] = polyfit(X,Y,N)还返回一个结构体 S,S可用作 polyval 的输入来获取误差估计值(S为由范德蒙矩阵的QR分解的R分量)。
其中 X 为输入的向量x,Y 为得到的函数值,N 表示拟合的最高次数,返回的P值为拟合的多项式:

P ( 1 ) × X n + P ( 2 ) × X n − 1 + … + P ( N ) × X + P ( N + 1 ) P(1) \times X^{n}+P(2) \times X^{n-1}+\ldots+P(N) \times X+P(N+1) P(1)×Xn+P(2)×Xn1++P(N)×X+P(N+1)

(3)[P,S,MU] = polyfit(X,Y,N)还返回 mu,mu是一个二元素向量,包含中心化值和缩放值。mu(1) 是 mean(x),mu(2) 是 std(x)。使用这些值时,polyfit 将 x 的中心置于零值处并缩放为具有单位标准差:

x ^ = x − x ˉ σ x \hat{x}=\frac{x-\bar{x}}{\sigma_{x}} x^=σxxxˉ

这种中心化和缩放变换可同时改善多项式和拟合算法的数值属性。

下面来看一些具体的例子:(来源于帮助文档,改编)

  • 将多项式与三角函数拟合:
    在区间 [0,4*pi] 中沿余弦曲线生成 10 个等间距的点。
>> x = linspace(0,4*pi,10);
>> y = cos(x);

使用 polyfit 将一个 7 次多项式与这些点拟合。

>> p = polyfit(x,y,7);

在更精细的网格上计算多项式并绘制结果图。

>> x1 = linspace(0,4*pi);
>> y1 = polyval(p,x1);
>> figure
>> plot(x,y,'o')
>> hold on
>> plot(x1,y1,'m')
>> hold off

运行结果如下:
在这里插入图片描述

  • 将多项式与点集拟合
    创建一个由区间 [0,1] 中的 5 个等间距点组成的向量,并计算这些点处的 y(x)= (2+x)^-1 。
>> x=0:0.2:1;   //或者写成  >> x=0:0.2:1;  也可以实现相同的作用
>> y = 1./(2+x);

将 4 次多项式与 5 个点拟合。通常,对于 n 个点,可以拟合 n-1 次多项式以便完全通过这些点。

>> p = polyfit(x,y,4);

在由 0 和 2 之间的点组成的更精细网格上计算原始函数和多项式拟合。

>> x1 = linspace(0,2);
>> y1 = 1./(2+x1);
>> f1 = polyval(p,x1);

在更大的区间 [0,2] 中绘制函数值和多项式拟合,其中包含用于获取以圆形突出显示的多项式拟合的点。多项式拟合在原始 [0,1] 区间中的效果较好,但在该区间外部很快与拟合函数出现差异。

>> figure
>> plot(x,y,'o')
>> hold on
>> plot(x1,y1)
>> plot(x1,f1,'b--')
>> legend('y','y1','f1')

运行结果如下:
在这里插入图片描述

  • 对误差函数进行多项式拟合:
    首先生成 x 点的向量,在区间 [0,1.5*pi] 内等间距分布;然后计算这些点处的 erf(x)。
    注:erf 是误差函数,也称高斯误差函数。
x = (0:0.10:1.5*pi)';y=erf(x);

确定6次逼近多项式的系数。

p=polyfit(x,y,6)

p =

0.0019   -0.0259    0.1242   -0.1785   -0.3442    1.2684   -0.0095

为了查看拟合情况如何,在各数据点处计算多项式,并生成说明数据、拟合和误差的一个表。

f=polyval(p,x);
T=table(x,y,f,y-f,'VariableNames',{'X','Y','Fit','FitError'})

T =

48×4 table

 X        Y          Fit         FitError  
___    _______    __________    ___________0          0    -0.0094811      0.0094811
0.1    0.11246       0.11375     -0.0012876
0.2     0.2227       0.22919     -0.0064911
0.3    0.32863       0.33619     -0.0075599
0.4    0.42839       0.43431      -0.005914
0.5     0.5205       0.52334     -0.0028408
0.6    0.60386       0.60326     0.00059392
0.7     0.6778        0.6742      0.0035981
0.8     0.7421       0.73643      0.0056695
0.9    0.79691       0.79033      0.00657941     0.8427       0.83637      0.0063316
1.1    0.88021        0.8751      0.0051058
1.2    0.91031       0.90712       0.003194
1.3    0.93401       0.93307     0.00093826
1.4    0.95229       0.95361      -0.001323
1.5    0.96611        0.9694     -0.0032971
...

在该区间中,插值与实际值非常符合。创建一个绘图,以显示在该区间以外,外插值与实际数据值如何快速偏离。

 x1=(0:0.10:2*pi)';y1=erf(x1);f1=polyval(p,x1);plot(x,y,'o')plot(x1,y1,'-')hold onplot(x1,y1,'-')plot(x1,f1,'g-')axis([0  5.5  0  3])

在这里插入图片描述

  • 使用中心化和缩放改善数值属性
    创建一个由 1750 - 2000 年的人口数据组成的表,并绘制数据点。
 year = (1750:25:2000)';pop = 1e6*[791 856 978 1050 1262 1544 1650 2532 6122 8170 11560]';T = table(year, pop)

T =

11×2 table

year       pop   
____    _________1750     7.91e+08
1775     8.56e+08
1800     9.78e+08
1825     1.05e+09
1850    1.262e+09
1875    1.544e+09
1900     1.65e+09
1925    2.532e+09
1950    6.122e+09
1975     8.17e+09
2000    1.156e+10
 plot(year,pop,'square')

在这里插入图片描述
使用带三个输入的 polyfit 拟合一个使用中心化和缩放的 5 次多项式,这将改善问题的数值属性。polyfit 将 year 中的数据以 0 为进行中心化,并缩放为具有标准差 1,这可避免在拟合计算中出现病态的 Vandermonde (范德蒙)矩阵。

[p,~,mu] = polyfit(T.year, T.pop, 5);

使用带四个输入的 polyval,根据缩放后的年份 (year-mu(1))/mu(2) 计算 p。绘制结果对原始年份的图。

f = polyval(p,year,[],mu);
hold on
plot(year,f)

在这里插入图片描述

  • 简单线性回归
    将一个简单线性回归模型与一组离散二维数据点拟合。
    创建几个由样本数据点 (x,y) 组成的向量。对数据进行一次多项式拟合。
>> x=1:40;
>> y=0.4*x-1.5*randn(1,60);
注意:这里 矩阵维度必须一致。 所以第二行代码的输入是错误的y=0.4*x-1.5*randn(1,40);p=polyfit(x,y,1);

计算在 x 中的点处拟合的多项式 p。用这些数据绘制得到的线性回归模型。

 f = polyval(p,x); plot(x,y,'o',x,f,'-')legend('data','linear fit')

在这里插入图片描述

  • 具有误差估计值的线性回归
    将一个线性模型拟合到一组数据点并绘制结果,其中包含预测区间为 95% 的估计值。
    创建几个由样本数据点 (x,y) 组成的向量。使用 polyfit 对数据进行一次多项式拟合。指定两个输出以返回线性拟合的系数以及误差估计结构体。
x = 1:100; 
y = -0.3*x + 2*randn(1,100); 
[p,S] = polyfit(x,y,1);

计算以 p 为系数的一次多项式在 x 中各点处的拟合值。将误差估计结构体指定为第三个输入,以便 polyval 计算标准误差的估计值。标准误差估计值在 delta 中返回。

[y_fit,delta] = polyval(p,x,S);

绘制原始数据、线性拟合和 95% 预测区间 y ± 2 Δ y \pm 2 \Delta y±2Δ

plot(x,y,'go')
hold on
plot(x,y_fit,'r-')
plot(x,y_fit+2*delta,'m--',x,y_fit-2*delta,'m--')
title('Linear Fit of Data with 95% Prediction Interval')
legend('Data','Linear Fit','95% Prediction Interval')

在这里插入图片描述

  • 输入参数解释:
  • x – 查询点 (向量)
    查询点,指定为一个向量。x 中的点对应于 y 中包含的拟合函数值。如果 x 不是向量,则 polyfit 将其转换为列向量 x( : )。😃
    x 具有重复(或接近重复)的点或者如果 x 可能需要中心化和缩放时的警告消息结果。
    **数据类型:**single | double
    复数支持:
  • y – 查询点位置的拟合值 (向量)
    查询点位置的拟合值,指定为向量。y 中的值对应于 x 中包含的查询点。如果 y 不是向量,则 polyfit 将其转换为列向量 y ( : ) 。😃
    **数据类型:**single | double
    复数支持:
  • n --多项式拟合的次数 (正整数标量)
    多项式拟合的次数,指定为正整数标量。n 指定 p 中最左侧系数的多项式幂
  • 输出参数解释:
  • p – 最小二乘拟合多项式系数(向量)

最小二乘拟合多项式系数,以向量的形式返回。p 的长度为 n+1,包含按降幂排列的多项式系数,最高幂为 n。如果 x 或 y 包含 NaN 值且 n < length(x),则 p 的所有元素均为 NaN。

使用 polyval 计算 p 在查询点处的解。

  • S – 误差估计结构体 (结构体)
    误差估计结构体。此可选输出结构体主要用作 polyval 函数的输入,以获取误差估计值。S 包含以下字段:
字段说明
RVandermonde 矩阵 x 的 QR 分解的三角因子
df自由度
normr残差的范数

如果 y 中的数据是随机的,则 p 的估计协方差矩阵是 (Rinv*Rinv’)*normr^2/df,其中 Rinv 是 R 的逆矩阵。

如果 y 中数据的误差呈独立正态分布,并具有常量方差,则 [y,delta] = polyval(…) 可生成至少包含 50% 的预测值的误差边界。即 y ± delta 至少包含 50% 对 x 处的未来观测值的预测值。

  • mu – 中心化值和缩放值

中心化值和缩放值,以二元素向量形式返回。mu(1) 为 mean(x),mu(2) 为 std(x)。这些值以单位标准差将 x 中的查询点的中心置于零值处。

使用 mu 作为 polyval 的第四个输入以计算 p 在缩放点 (x - mu(1))/mu(2) 处的解。

局限性

  • 在涉及很多点的问题中,使用 polyfit 增加多项式拟合的次数并不总能得到较好的拟合。高次多项式可以在数据点之间振动,导致与数据之间的拟合较差。在这些情况下,可使用低次多项式拟合(点之间倾向于更平滑)或不同的方法,具体取决于该问题。
  • 多项式在本质上是无边界的振荡函数。所以,它们并不非常适合外插有界的数据或单调(递增或递减)的数据。

算法:
polyfit 使用 x 构造具有 n+1 列和 m = length(x) 行的 Vandermonde 矩阵 V 并生成线性方程组
( x 1 n x 1 n − 1 … 1 n 2 x 2 − 1 … 1 ⋮ ⋮ ⋱ ⋮ n m x m − 1 … 1 ) ( p 1 p 2 ⋮ p n + 1 ) = ( y 1 y 2 ⋮ y m ) \left(\begin{array}{cccc} x_{1}^{n} & x_{1}^{n-1} & \ldots & 1 \\ n_{2} & x_{2}-1 & \ldots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ n_{m} & x_{m}-1 & \ldots & 1 \end{array}\right)\left(\begin{array}{c} p_{1} \\ p_{2} \\ \vdots \\ p_{n+1} \end{array}\right)=\left(\begin{array}{c} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{array}\right) x1nn2nmx1n1x21xm1111p1p2pn+1=y1y2ym

其中 polyfit 使用 p = V\y 求解。由于 Vandermonde 矩阵中的列是向量 x 的幂,因此条件数 V 对于高阶拟合来说通常较大,生成一个奇异系数矩阵。在这些情况下,中心化和缩放可改善系统的数值属性以产生更可靠的拟合。

这篇关于MATLAB 数据拟合 (使用 polyfit 多项式曲线拟合、polyval)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/948027

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud