阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理

本文主要是介绍阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理

文章目录

  • 阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理
    • 简介
    • 环境部署
      • 下载源码
      • 安装环境
      • 下载模型
    • 测试一下
    • 看看效果
    • 模型转onnx
    • 测试一下生成的onnx模型
    • 看看效果
    • C++ 推理

简介

DDColor是一种基于深度学习的图像上色技术,它利用卷积神经网络(CNN)对黑白图像进行上色处理。该模型通常包含一个编码器和一个解码器,编码器提取图像的特征,解码器则根据这些特征生成颜色。DDColor模型能够处理多种类型的图像,并生成自然且逼真的颜色效果。它在图像编辑、电影后期制作以及历史照片修复等领域有广泛的应用。

环境部署

下载源码

git clone https://github.com/piddnad/DDColor.git

安装环境

conda create -n ddcolor python=3.9
conda activate ddcolor
pip install -r requirements.txt
python3 setup.py develop
pip install modelscope
pip install onnx
pip install onnxruntime

下载模型

这里下载
或者运行下面的脚本下载:

from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('damo/cv_ddcolor_image-colorization', cache_dir='./modelscope')
print('model assets saved to %s'%model_dir)
#模型会被下载到modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt

测试一下

import argparse
import cv2
import numpy as np
import os
from tqdm import tqdm
import torch
from basicsr.archs.ddcolor_arch import DDColor
import torch.nn.functional as Fclass ImageColorizationPipeline(object):def __init__(self, model_path, input_size=256, model_size='large'):self.input_size = input_sizeif torch.cuda.is_available():self.device = torch.device('cuda')else:self.device = torch.device('cpu')if model_size == 'tiny':self.encoder_name = 'convnext-t'else:self.encoder_name = 'convnext-l'self.decoder_type = "MultiScaleColorDecoder"if self.decoder_type == 'MultiScaleColorDecoder':self.model = DDColor(encoder_name=self.encoder_name,decoder_name='MultiScaleColorDecoder',input_size=[self.input_size, self.input_size],num_output_channels=2,last_norm='Spectral',do_normalize=False,num_queries=100,num_scales=3,dec_layers=9,).to(self.device)else:self.model = DDColor(encoder_name=self.encoder_name,decoder_name='SingleColorDecoder',input_size=[self.input_size, self.input_size],num_output_channels=2,last_norm='Spectral',do_normalize=False,num_queries=256,).to(self.device)self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['params'],strict=False)self.model.eval()@torch.no_grad()def process(self, img):self.height, self.width = img.shape[:2]# print(self.width, self.height)# if self.width * self.height < 100000:#     self.input_size = 256img = (img / 255.0).astype(np.float32)orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)# resize rgb image -> lab -> get grey -> rgbimg = cv2.resize(img, (self.input_size, self.input_size))img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)# (1, 2, self.height, self.width)output_ab = self.model(tensor_gray_rgb).cpu()# resize ab -> concat original l -> rgboutput_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0)output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1)output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)output_img = (output_bgr * 255.0).round().astype(np.uint8)return output_imgdef main():parser = argparse.ArgumentParser()parser.add_argument('--model_path', type=str,default='pretrain/net_g_200000.pth')parser.add_argument('--input_size', type=int,default=512, help='input size for model')parser.add_argument('--model_size', type=str,default='large', help='ddcolor model size')args = parser.parse_args()colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size)img = cv2.imread("./down.jpg")image_out = colorizer.process(img)cv2.imwrite("./downout.jpg", image_out)if __name__ == '__main__':main()
python test.py  --model_path=./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt

看看效果

在这里插入图片描述

在这里插入图片描述
效果看起来非常的nice!

模型转onnx

import argparse
import cv2
import numpy as np
import os
from tqdm import tqdm
import torch
from basicsr.archs.ddcolor_arch import DDColor
import torch.nn.functional as Fclass ImageColorizationPipeline(object):def __init__(self, model_path, input_size=256, model_size='large'):self.input_size = input_sizeif torch.cuda.is_available():self.device = torch.device('cuda')else:self.device = torch.device('cpu')if model_size == 'tiny':self.encoder_name = 'convnext-t'else:self.encoder_name = 'convnext-l'self.decoder_type = "MultiScaleColorDecoder"if self.decoder_type == 'MultiScaleColorDecoder':self.model = DDColor(encoder_name=self.encoder_name,decoder_name='MultiScaleColorDecoder',input_size=[self.input_size, self.input_size],num_output_channels=2,last_norm='Spectral',do_normalize=False,num_queries=100,num_scales=3,dec_layers=9,).to(self.device)else:self.model = DDColor(encoder_name=self.encoder_name,decoder_name='SingleColorDecoder',input_size=[self.input_size, self.input_size],num_output_channels=2,last_norm='Spectral',do_normalize=False,num_queries=256,).to(self.device)print(model_path)self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['params'],strict=False)self.model.eval()@torch.no_grad()def process(self, img):self.height, self.width = img.shape[:2]# print(self.width, self.height)# if self.width * self.height < 100000:#     self.input_size = 256img = (img / 255.0).astype(np.float32)orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)# resize rgb image -> lab -> get grey -> rgbimg = cv2.resize(img, (self.input_size, self.input_size))img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)output_ab = self.model(tensor_gray_rgb).cpu()  # (1, 2, self.height, self.width)# resize ab -> concat original l -> rgboutput_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0)output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1)output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)output_img = (output_bgr * 255.0).round().astype(np.uint8)    return output_img@torch.no_grad()def expirt_onnx(self, img):self.height, self.width = img.shape[:2]img = (img / 255.0).astype(np.float32)orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)# resize rgb image -> lab -> get grey -> rgbimg = cv2.resize(img, (self.input_size, self.input_size))img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)mymodel = self.model.to('cpu')tensor_gray_rgb = tensor_gray_rgb.to('cpu')onnx_save_path = "color.onnx"torch.onnx.export(mymodel,  # 要导出的模型tensor_gray_rgb,  # 模型的输入onnx_save_path,  # 导出的文件路径export_params=True,  # 是否将训练参数导出opset_version=12,  # 导出的ONNX的操作集版本do_constant_folding=True,  # 是否执行常量折叠优化input_names=['input'],  # 输入张量的名称output_names=['output'],  # 输出张量的名称dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}})returndef main():parser = argparse.ArgumentParser()parser.add_argument('--model_path', type=str, default='pretrain/net_g_200000.pth')parser.add_argument('--input_size', type=int, default=512, help='input size for model')parser.add_argument('--model_size', type=str, default='large', help='ddcolor model size')args = parser.parse_args()colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size)img = cv2.imread("./down.jpg")image_out = colorizer.expirt_onnx(img)# image_out = colorizer.process(img)# cv2.imwrite("./downout.jpg", image_out)if __name__ == '__main__':main()
python model2onnx.py  --model_path=./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt

测试一下生成的onnx模型

import onnxruntime
import cv2
import numpy as npdef colorize_image(input_image_path, output_image_path, model_path):input_image = cv2.imread(input_image_path)img = (input_image / 255.0).astype(np.float32)orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)img = cv2.resize(img, (512, 512))img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)input_blob = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)# Change data layout from HWC to CHWinput_blob = np.transpose(input_blob, (2, 0, 1))input_blob = np.expand_dims(input_blob, axis=0)  # Add batch dimension# Initialize ONNX Runtime Inference Sessionsession = onnxruntime.InferenceSession(model_path)# Perform inferenceoutput_blob = session.run(None, {'input': input_blob})[0]# Post-process the outputoutput_blob = np.squeeze(output_blob)  # Remove batch dimension# Separate ab channels# Change data layout from CHW to HWCoutput_ab = output_blob.transpose((1, 2, 0))# Resize to match input image sizeoutput_ab = cv2.resize(output_ab, (input_image.shape[1], input_image.shape[0]))output_lab = np.concatenate((orig_l, output_ab), axis=-1)# Convert LAB to BGRoutput_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)output_bgr = output_bgr*255# Save the colorized imagecv2.imwrite(output_image_path, output_bgr)# Define paths
input_image_path = 'down.jpg'
output_image_path = 'downout2.jpg'
model_path = 'color.onnx'# Perform colorization
colorize_image(input_image_path, output_image_path, model_path)
python testonnx.py

看看效果

在这里插入图片描述
嗯,模型没有问题,下面开始用c++推理

C++ 推理

#pragma once
#include <iostream>
#include <assert.h>
#include <vector>
#include <onnxruntime_cxx_api.h>
#include <opencv2/opencv.hpp>namespace LIANGBAIKAI_BASE_MODEL_NAME
{class ONNX_DDcolor{public:ONNX_DDcolor() : session(nullptr){};virtual ~ONNX_DDcolor() = default;/*初始化* @param model_path 模型* @param gpu_id 选择用那块GPU*/void Init(const char *model_path, int gpu_id = 0){env = Ort::Env(ORT_LOGGING_LEVEL_ERROR, "ONNX_DDcolor");Ort::SessionOptions session_options;// 使用五个线程执行op,提升速度session_options.SetIntraOpNumThreads(5);session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);if (gpu_id >= 0){OrtCUDAProviderOptions cuda_option;cuda_option.device_id = gpu_id;session_options.AppendExecutionProvider_CUDA(cuda_option);}session = Ort::Session(env, model_path, session_options);return;}/**执行模型推理* @param src : 输入图* @param inputid : 输入id* @param outputid : 输出的id* @return 输出结果图*/cv::Mat Run(cv::Mat src, unsigned inputid = 0, unsigned outputid = 0, bool show_log = false){cv::Mat img;src.convertTo(img, CV_32FC3, 1.0/255.0);// 拷贝图片并将图片由 BGR 转为 LAB,分离出L通道cv::Mat orig_lab;cv::cvtColor(img, orig_lab, cv::COLOR_BGR2Lab);cv::Mat orig_l = orig_lab.clone();cv::extractChannel(orig_lab, orig_l, 0); // 分离出 L 通道cv::resize(img, img, cv::Size(512, 512));//将图片由RGB转为Lab,然后将ab通道用同尺寸的0矩阵代替,最后再将图片转回rgbcv::Mat img_lab;cv::cvtColor(img, img_lab, cv::COLOR_BGR2Lab);std::vector<cv::Mat> lab_planes;cv::split(img_lab, lab_planes);cv::Mat img_gray_lab = cv::Mat::zeros(img_lab.rows, img_lab.cols, CV_32FC3);std::vector<cv::Mat> img_channels = {lab_planes[0], cv::Mat::zeros(img_lab.rows, img_lab.cols, CV_32F), cv::Mat::zeros(img_lab.rows, img_lab.cols, CV_32F)};cv::merge(img_channels, img_gray_lab);// Convert LAB to RGBcv::Mat input_blob;cv::cvtColor(img_gray_lab, input_blob, cv::COLOR_Lab2RGB);//将input_blob送入神经网络输入,进行推理int64_t H = input_blob.rows;int64_t W = input_blob.cols;cv::Mat blob;cv::dnn::blobFromImage(input_blob, blob, 1.0 , cv::Size(W, H), cv::Scalar(0, 0, 0), false, true);// 创建tensorsize_t input_tensor_size = blob.total();std::vector<float> input_tensor_values(input_tensor_size);// overwrite input dimsstd::vector<int64_t> input_node_dims = GetInputOrOutputShape("input", inputid, show_log);input_node_dims[0] = 1;input_node_dims[2] = W;input_node_dims[3] = H;for (size_t i = 0; i < input_tensor_size; ++i){input_tensor_values[i] = blob.at<float>(i);// std::cout <<" " << input_tensor_values[i] ;}// std::cout << std::endl;// 查看输入的shapeif (show_log){std::cout << "shape:";for (auto &i : input_node_dims){std::cout << " " << i;}std::cout << std::endl;std::cout << "input_tensor_size: " << input_tensor_size << std::endl;}auto memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);auto input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_node_dims.data(), input_node_dims.size());std::string input_name = GetInputOrOutputName("input", inputid, show_log);std::string output_name = GetInputOrOutputName("output", outputid, show_log);const char *inputname[] = {input_name.c_str()};   // 输入节点名const char *outputname[] = {output_name.c_str()}; // 输出节点名std::vector<Ort::Value> output_tensor = session.Run(Ort::RunOptions{nullptr}, inputname, &input_tensor, 1, outputname, 1);if (show_log){// 显示有几个输出的结果std::cout << "output_tensor_size: " << output_tensor.size() << std::endl;}// 获取output的shapeOrt::TensorTypeAndShapeInfo shape_info = output_tensor[0].GetTensorTypeAndShapeInfo();// 获取output的dimsize_t dim_count = shape_info.GetDimensionsCount();if (show_log){std::cout << dim_count << std::endl;}auto shape = shape_info.GetShape();if (show_log){// 显示输出的shape信息std::cout << "shape: ";for (auto &i : shape){std::cout << i << " ";}std::cout << std::endl;}// 取output数据float *f = output_tensor[0].GetTensorMutableData<float>();int output_width = shape[2];int output_height = shape[3];int size_pic = output_width * output_height;cv::Mat fin_img;std::vector<cv::Mat> abChannels(2);abChannels[0] = cv::Mat(output_height, output_width, CV_32FC1, f);abChannels[1] = cv::Mat(output_height, output_width, CV_32FC1, f + size_pic);merge(abChannels, fin_img);cv::Mat output_ab;cv::resize(fin_img, output_ab, cv::Size(src.cols, src.rows));// Concatenate L and ab channelsstd::vector<cv::Mat> output_channels = {orig_l, output_ab};cv::Mat output_lab;cv::merge(output_channels, output_lab);// Convert LAB to BGRcv::Mat output_bgr;cv::cvtColor(output_lab, output_bgr, cv::COLOR_Lab2BGR);output_bgr.convertTo(output_bgr, CV_8UC3, 255);return output_bgr;}private:/*获取模型的inputname 或者 outputname* @param input_or_output  选择要获取的是input还是output* @param id 选择要返回的是第几个name* @param show_log 是否打印信息* @return 返回name*/std::string GetInputOrOutputName(std::string input_or_output = "input", unsigned id = 0, bool show_log = false){size_t num_input_nodes = session.GetInputCount();size_t num_output_nodes = session.GetOutputCount();if (show_log){// 显示模型有几个输入几个输出std::cout << "num_input_nodes:" << num_input_nodes << std::endl;std::cout << "num_output_nodes:" << num_output_nodes << std::endl;}std::vector<const char *> input_node_names(num_input_nodes);std::vector<const char *> output_node_names(num_output_nodes);Ort::AllocatorWithDefaultOptions allocator;std::string name;if (input_or_output == "input"){Ort::AllocatedStringPtr input_name_Ptr = session.GetInputNameAllocated(id, allocator);name = input_name_Ptr.get();}else{auto output_name_Ptr = session.GetOutputNameAllocated(id, allocator);name = output_name_Ptr.get();}if (show_log){std::cout << "name:" << name << std::endl;}return name;}/*获取模型的input或者output的shape信息* @param input_or_output  选择要获取的是input还是output* @param id 选择要返回的是第几个shape* @param show_log 是否打印信息* @return 返回shape信息*/std::vector<int64_t> GetInputOrOutputShape(std::string input_or_output = "input", unsigned id = 0, bool show_log = false){std::vector<int64_t> shape;if (input_or_output == "input"){Ort::TypeInfo type_info = session.GetInputTypeInfo(id);auto tensor_info = type_info.GetTensorTypeAndShapeInfo();// 得到输入节点的数据类型ONNXTensorElementDataType type = tensor_info.GetElementType();if (show_log){std::cout << "input_type: " << type << std::endl;}shape = tensor_info.GetShape();if (show_log){std::cout << "intput shape:";for (auto &i : shape){std::cout << " " << i;}std::cout << std::endl;}}else{Ort::TypeInfo type_info_out = session.GetOutputTypeInfo(id);auto tensor_info_out = type_info_out.GetTensorTypeAndShapeInfo();// 得到输出节点的数据类型ONNXTensorElementDataType type_out = tensor_info_out.GetElementType();if (show_log){std::cout << "output type: " << type_out << std::endl;}// 得到输出节点的输入维度 std::vector<int64_t>shape = tensor_info_out.GetShape();if (show_log){std::cout << "output shape:";for (auto &i : shape){std::cout << " " << i;}std::cout << std::endl;}}return shape;}mutable Ort::Session session;Ort::Env env; };}

测试没有问题,成功!

这篇关于阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/947461

相关文章

如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件

《如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件》本文介绍了如何使用Docker部署FTP服务器和Nginx,并通过HTTP访问FTP中的文件,通过将FTP数据目录挂载到N... 目录docker部署FTP和Nginx并通过HTTP访问FTP里的文件1. 部署 FTP 服务器 (

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

Ubuntu 22.04 服务器安装部署(nginx+postgresql)

《Ubuntu22.04服务器安装部署(nginx+postgresql)》Ubuntu22.04LTS是迄今为止最好的Ubuntu版本之一,很多linux的应用服务器都是选择的这个版本... 目录是什么让 Ubuntu 22.04 LTS 变得安全?更新了安全包linux 内核改进一、部署环境二、安装系统

JAVA集成本地部署的DeepSeek的图文教程

《JAVA集成本地部署的DeepSeek的图文教程》本文主要介绍了JAVA集成本地部署的DeepSeek的图文教程,包含配置环境变量及下载DeepSeek-R1模型并启动,具有一定的参考价值,感兴趣的... 目录一、下载部署DeepSeek1.下载ollama2.下载DeepSeek-R1模型并启动 二、J

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Docker部署Jenkins持续集成(CI)工具的实现

《Docker部署Jenkins持续集成(CI)工具的实现》Jenkins是一个流行的开源自动化工具,广泛应用于持续集成(CI)和持续交付(CD)的环境中,本文介绍了使用Docker部署Jenkins... 目录前言一、准备工作二、设置变量和目录结构三、配置 docker 权限和网络四、启动 Jenkins

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1