代码随想录算法训练营第13天 | 239. 滑动窗口最大值 | 347. 前 K 个高频元素

本文主要是介绍代码随想录算法训练营第13天 | 239. 滑动窗口最大值 | 347. 前 K 个高频元素,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

239. 滑动窗口最大值

题目链接

题意

给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。返回 滑动窗口中的最大值 。示例 1:输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       31 [3  -1  -3] 5  3  6  7       31  3 [-1  -3  5] 3  6  7       51  3  -1 [-3  5  3] 6  7       51  3  -1  -3 [5  3  6] 7       61  3  -1  -3  5 [3  6  7]      7
示例 2:输入:nums = [1], k = 1
输出:[1]提示:1 <= nums.length <= 105
-104 <= nums[i] <= 104
1 <= k <= nums.length

解1

用栈实现单调栈, 由于需要拷贝, 超时了

/*** Note: The returned array must be malloced, assume caller calls free().*/struct stack{int top;int array[100005];
};int* maxSlidingWindow(int* nums, int numsSize, int k, int* returnSize) {struct stack *st = (struct stack *)malloc(sizeof(struct stack));int *ans = (int *)malloc(sizeof(int) * 100005);int idx = 0;memset(ans, 0, sizeof(int) * 100005);memset(st, 0, sizeof(*st));st->top = -1;for (int i = 0; i < k; i++) {while (st->top != -1 && st->array[st->top] < nums[i]) {st->top--;} st->array[++st->top] = nums[i];}ans[idx++] = st->array[0];for (int i = k; i < numsSize; i++) {while (st->top != -1 && st->array[st->top] < nums[i])  st->top--;st->array[++st->top] = nums[i];if (st->array[0] == nums[i-k]) {int j = 0;while (j < st->top) {st->array[j] = st->array[j+1];j++;}st->top--;}ans[idx++] = st->array[0];}*returnSize = idx;return ans;
}

解2: 队列实现单调栈

/*** Note: The returned array must be malloced, assume caller calls free().*/const int max = 1e5+10;
struct queue{int front, back;int array[100005];
};int empty(struct queue *queue) {if (queue->front == queue->back) {return 1;}return 0;
}void push(struct queue *que, int n) {while (!empty(que) && que->array[que->back] < n) {que->back--;}que->array[++que->back] = n;
}void pop(struct queue *que, int n) {if (que->array[que->front+1] == n) {que->front++;}
}int* maxSlidingWindow(int* nums, int numsSize, int k, int* returnSize) {struct queue *que = (struct queue *)malloc(sizeof(struct queue));int *ans = (int *)malloc(sizeof(int) * max);int idx = 0;memset(que, 0, sizeof(*que));que->front = que->back = -1;for (int i = 0; i < k; i++) {push(que, nums[i]);}ans[idx++] = que->array[que->front+1];for (int i = k; i < numsSize; i++) {pop(que, nums[i-k]);push(que, nums[i]);ans[idx++] = que->array[que->front+1];}*returnSize = idx;return ans;
}

347. 前 K 个高频元素

题目链接

题意

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。示例 1:输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
示例 2:输入: nums = [1], k = 1
输出: [1]提示:1 <= nums.length <= 105
k 的取值范围是 [1, 数组中不相同的元素的个数]
题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的进阶:你所设计算法的时间复杂度 必须 优于 O(n log n) ,其中 n 是数组大小。

小顶堆

class Solution {
public:struct cmp_pair {bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {return lhs.second > rhs.second;}};vector<int> topKFrequent(vector<int>& nums, int k) {vector<int> ans(k);unordered_map<int, int> map;for (int i = 0; i < nums.size(); i++) {map[nums[i]]++;}priority_queue<pair<int, int>, vector<pair<int, int>>, cmp_pair> pri_que;for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) {pri_que.push(*it);if (pri_que.size() > k) {pri_que.pop();}}for (int i = k-1; i >= 0; i--) {ans[i] = pri_que.top().first;pri_que.pop();}return ans;}
};

这篇关于代码随想录算法训练营第13天 | 239. 滑动窗口最大值 | 347. 前 K 个高频元素的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/947428

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费