使用逆滤波算法deconvwnr恢复图像回复图像时,产生了很多横竖条纹。解决办法

本文主要是介绍使用逆滤波算法deconvwnr恢复图像回复图像时,产生了很多横竖条纹。解决办法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用逆滤波算法deconvwnr恢复图像时,产生了很多横竖条纹。解决办法

原来的代码

% 清除工作空间并关闭所有图形窗口
clear; clc; close all;% 读取原始图像
original_image = imread('pic3.jpg');% 显示原始图像
subplot(131);
imshow(original_image);
title('Original Image');% 创建模糊核(PSF)
PSF = fspecial('gaussian', [5 5], 2); % 高斯模糊核
blurred_image = imfilter(original_image, PSF); % 模糊图像% 显示模糊图像
subplot(132);
imshow(blurred_image);
title('Blurred Image');% 估计噪声方差
estimated_noise_variance = 0.0001; % 估计的噪声方差% 使用逆滤波算法deconvwnr恢复图像
restored_image = deconvwnr(blurred_image, PSF, estimated_noise_variance);% 显示恢复后的图像
subplot(133);
imshow(restored_image);
title('Restored Image');

结果图:

在这里插入图片描述

横竖条纹可能是由于逆滤波算法的过度放大导致的,这是常见的问题之一。在处理模糊和噪声的图像时,逆滤波容易放大高频噪声,从而产生这种条纹效应。为了解决这个问题,可以尝试以下方法之一:

1.正则化参数调整:逆滤波算法通常有一个正则化参数,用于控制放大高频噪声的程度。通过调整正则化参数,可以尝试减轻条纹效应。
2.使用其他复原算法:除了逆滤波算法外,还有许多其他复原算法可供选择,如Richardson-Lucy 算法、Wiener 滤波器等。尝试使用不同的算法可能会获得更好的结果。
3.处理模糊核不确定性:如果模糊核的准确性不高或无法准确估计,可以尝试使用一些更复杂的方法来处理模糊核的不确定性,如盲去卷积算法。
4.后处理:对恢复的图像进行后处理操作,如边缘增强、降噪等,以改善图像质量并减轻条纹效应。

尝试调整正则化参数来减轻条纹效应,代码如下:

% 使用逆滤波算法deconvwnr恢复图像,并调整正则化参数
restored_image = deconvwnr(blurred_image, PSF, estimated_noise_variance, 0.01);% 显示恢复后的图像
subplot(133);
imshow(restored_image);
title('Restored Image');

结果:横竖条纹减少
图像:
在这里插入图片描述

可以尝试不同的正则化参数值,以找到最适合所选图像的结果。
如果问题仍然存在,可能需要尝试其他复原算法或进行更复杂的处理。

注:
本文所用方法对于所选图像进行图像复原操作效果不是很明显,代码还有待优化。
本文主要侧重点:解决图像产生的条纹,调整正则化参数来减轻条纹效应。

这篇关于使用逆滤波算法deconvwnr恢复图像回复图像时,产生了很多横竖条纹。解决办法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946929

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma