AI项目二十:基于YOLOv8实例分割的DeepSORT多目标跟踪

2024-04-29 11:44

本文主要是介绍AI项目二十:基于YOLOv8实例分割的DeepSORT多目标跟踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

若该文为原创文章,转载请注明原文出处。

前面提及目标跟踪使用的方法有很多,更多的是Deepsort方法。

本篇博客记录YOLOv8的实例分割+deepsort视觉跟踪算法。结合YOLOv8的目标检测分割和deepsort的特征跟踪,该算法在复杂环境下确保了目标的准确与稳定跟踪。在计算机视觉中,这种跟踪技术在安全监控、无人驾驶等领域有着广泛应用。

源码地址:GitHub - MuhammadMoinFaisal/YOLOv8_Segmentation_DeepSORT_Object_Tracking: YOLOv8 Segmentation with DeepSORT Object Tracking (ID + Trails)

感谢Muhammad Moin

一、环境搭建教程

使用的是Anaconda3,环境自行安装,可以参考前面的文章搭建。

1、创建虚拟环境

conda create -n YOLOv8-Seg-Deepsort python=3.8

2、激活

conda activate YOLOv8-Seg-Deepsort

二、下载代码

代码可以使用源码,也可以使用我的,我把YOLOv8_Segmentation_DeepSORT_Object_Tracking和YOLOv8-DeepSORT-Object-Tracking整合在一起了。

下载地址:

Yinyifeng18/YOLOv8_Segmentation_DeepSORT_Object_Tracking (github.com)

git clone https://github.com/Yinyifeng18/YOLOv8_Segmentation_DeepSORT_Object_Tracking.git

三、、安装依赖项

pip install -e ".[dev]"

如果使用的是源码,会出现下面错误:

AttributeError: module 'numpy' has no attribute 'float'
 
Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.

出错错误的原因是所用的代码是依赖于旧版本的Numpy。您可以将你的Numpy版本降级到1.23.5。

pip install numpy==1.23.5

四、测试

1、转到检测或分割目录下

cd YOLOv8_Segmentation_DeepSORT_Object_Tracking\ultralytics\yolo\v8\detect

cd YOLOv8_Segmentation_DeepSORT_Object_Tracking\ultralytics\yolo\v8\segment

2、测试

python predict.py model=yolov8l.pt source="test3.mp4" show=True

python predict.py model=yolov8x-seg.pt source="test3.mp4" show=True

使用是实例分割测试,运行结果。

如果想保存视频,直接参数save=True

五、代码説明

DeepSort需要DeepSORT 文件,下载地址是:


https://drive.google.com/drive/folders/1kna8eWGrSfzaR6DtNJ8_GchGgPMv3VC8?usp=sharing
  • 下载DeepSORT Zip文件后,将其解压缩到子文件夹中,然后将deep_sort_pytorch文件夹放入ultralytics/yolo/v8/segment文件夹中

  • 目录结果如下

这里直接附predict.py代码

# Ultralytics YOLO 🚀, GPL-3.0 licenseimport hydra
import torchfrom ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT, ops
from ultralytics.yolo.utils.checks import check_imgsz
from ultralytics.yolo.utils.plotting import colors, save_one_boxfrom ultralytics.yolo.v8.detect.predict import DetectionPredictor
from numpy import randomimport cv2
from deep_sort_pytorch.utils.parser import get_config
from deep_sort_pytorch.deep_sort import DeepSort
#Deque is basically a double ended queue in python, we prefer deque over list when we need to perform insertion or pop up operations
#at the same time
from collections import deque
import numpy as np
palette = (2 ** 11 - 1, 2 ** 15 - 1, 2 ** 20 - 1)
data_deque = {}deepsort = Noneobject_counter = {}object_counter1 = {}line = [(100, 500), (1050, 500)]
def init_tracker():global deepsortcfg_deep = get_config()cfg_deep.merge_from_file("deep_sort_pytorch/configs/deep_sort.yaml")deepsort= DeepSort(cfg_deep.DEEPSORT.REID_CKPT,max_dist=cfg_deep.DEEPSORT.MAX_DIST, min_confidence=cfg_deep.DEEPSORT.MIN_CONFIDENCE,nms_max_overlap=cfg_deep.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg_deep.DEEPSORT.MAX_IOU_DISTANCE,max_age=cfg_deep.DEEPSORT.MAX_AGE, n_init=cfg_deep.DEEPSORT.N_INIT, nn_budget=cfg_deep.DEEPSORT.NN_BUDGET,use_cuda=True)
##########################################################################################
def xyxy_to_xywh(*xyxy):"""" Calculates the relative bounding box from absolute pixel values. """bbox_left = min([xyxy[0].item(), xyxy[2].item()])bbox_top = min([xyxy[1].item(), xyxy[3].item()])bbox_w = abs(xyxy[0].item() - xyxy[2].item())bbox_h = abs(xyxy[1].item() - xyxy[3].item())x_c = (bbox_left + bbox_w / 2)y_c = (bbox_top + bbox_h / 2)w = bbox_wh = bbox_hreturn x_c, y_c, w, hdef xyxy_to_tlwh(bbox_xyxy):tlwh_bboxs = []for i, box in enumerate(bbox_xyxy):x1, y1, x2, y2 = [int(i) for i in box]top = x1left = y1w = int(x2 - x1)h = int(y2 - y1)tlwh_obj = [top, left, w, h]tlwh_bboxs.append(tlwh_obj)return tlwh_bboxsdef compute_color_for_labels(label):"""Simple function that adds fixed color depending on the class"""if label == 0: #personcolor = (85,45,255)elif label == 2: # Carcolor = (222,82,175)elif label == 3:  # Motobikecolor = (0, 204, 255)elif label == 5:  # Buscolor = (0, 149, 255)else:color = [int((p * (label ** 2 - label + 1)) % 255) for p in palette]return tuple(color)def draw_border(img, pt1, pt2, color, thickness, r, d):x1,y1 = pt1x2,y2 = pt2# Top leftcv2.line(img, (x1 + r, y1), (x1 + r + d, y1), color, thickness)cv2.line(img, (x1, y1 + r), (x1, y1 + r + d), color, thickness)cv2.ellipse(img, (x1 + r, y1 + r), (r, r), 180, 0, 90, color, thickness)# Top rightcv2.line(img, (x2 - r, y1), (x2 - r - d, y1), color, thickness)cv2.line(img, (x2, y1 + r), (x2, y1 + r + d), color, thickness)cv2.ellipse(img, (x2 - r, y1 + r), (r, r), 270, 0, 90, color, thickness)# Bottom leftcv2.line(img, (x1 + r, y2), (x1 + r + d, y2), color, thickness)cv2.line(img, (x1, y2 - r), (x1, y2 - r - d), color, thickness)cv2.ellipse(img, (x1 + r, y2 - r), (r, r), 90, 0, 90, color, thickness)# Bottom rightcv2.line(img, (x2 - r, y2), (x2 - r - d, y2), color, thickness)cv2.line(img, (x2, y2 - r), (x2, y2 - r - d), color, thickness)cv2.ellipse(img, (x2 - r, y2 - r), (r, r), 0, 0, 90, color, thickness)cv2.rectangle(img, (x1 + r, y1), (x2 - r, y2), color, -1, cv2.LINE_AA)cv2.rectangle(img, (x1, y1 + r), (x2, y2 - r - d), color, -1, cv2.LINE_AA)cv2.circle(img, (x1 +r, y1+r), 2, color, 12)cv2.circle(img, (x2 -r, y1+r), 2, color, 12)cv2.circle(img, (x1 +r, y2-r), 2, color, 12)cv2.circle(img, (x2 -r, y2-r), 2, color, 12)return imgdef UI_box(x, img, color=None, label=None, line_thickness=None):# Plots one bounding box on image imgtl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thicknesscolor = color or [random.randint(0, 255) for _ in range(3)]c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)if label:tf = max(tl - 1, 1)  # font thicknesst_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]img = draw_border(img, (c1[0], c1[1] - t_size[1] -3), (c1[0] + t_size[0], c1[1]+3), color, 1, 8, 2)cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)def intersect(A,B,C,D):return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)def ccw(A,B,C):return (C[1]-A[1]) * (B[0]-A[0]) > (B[1]-A[1]) * (C[0]-A[0])def get_direction(point1, point2):direction_str = ""# calculate y axis directionif point1[1] > point2[1]:direction_str += "South"elif point1[1] < point2[1]:direction_str += "North"else:direction_str += ""# calculate x axis directionif point1[0] > point2[0]:direction_str += "East"elif point1[0] < point2[0]:direction_str += "West"else:direction_str += ""return direction_str
def draw_boxes(img, bbox, names,object_id, identities=None, offset=(0, 0)):cv2.line(img, line[0], line[1], (46,162,112), 3)height, width, _ = img.shape# remove tracked point from buffer if object is lostfor key in list(data_deque):if key not in identities:data_deque.pop(key)for i, box in enumerate(bbox):x1, y1, x2, y2 = [int(i) for i in box]x1 += offset[0]x2 += offset[0]y1 += offset[1]y2 += offset[1]# code to find center of bottom edgecenter = (int((x2+x1)/ 2), int((y2+y2)/2))# get ID of objectid = int(identities[i]) if identities is not None else 0# create new buffer for new objectif id not in data_deque:  data_deque[id] = deque(maxlen= 64)color = compute_color_for_labels(object_id[i])obj_name = names[object_id[i]]label = '{}{:d}'.format("", id) + ":"+ '%s' % (obj_name)# add center to bufferdata_deque[id].appendleft(center)if len(data_deque[id]) >= 2:direction = get_direction(data_deque[id][0], data_deque[id][1])if intersect(data_deque[id][0], data_deque[id][1], line[0], line[1]):cv2.line(img, line[0], line[1], (255, 255, 255), 3)if "South" in direction:if obj_name not in object_counter:object_counter[obj_name] = 1else:object_counter[obj_name] += 1if "North" in direction:if obj_name not in object_counter1:object_counter1[obj_name] = 1else:object_counter1[obj_name] += 1UI_box(box, img, label=label, color=color, line_thickness=2)# draw trailfor i in range(1, len(data_deque[id])):# check if on buffer value is noneif data_deque[id][i - 1] is None or data_deque[id][i] is None:continue# generate dynamic thickness of trailsthickness = int(np.sqrt(64 / float(i + i)) * 1.5)# draw trailscv2.line(img, data_deque[id][i - 1], data_deque[id][i], color, thickness)#4. Display Count in top right cornerfor idx, (key, value) in enumerate(object_counter1.items()):cnt_str = str(key) + ":" +str(value)cv2.line(img, (width - 500,25), (width,25), [85,45,255], 40)cv2.putText(img, f'Number of Vehicles Entering', (width - 500, 35), 0, 1, [225, 255, 255], thickness=2, lineType=cv2.LINE_AA)cv2.line(img, (width - 150, 65 + (idx*40)), (width, 65 + (idx*40)), [85, 45, 255], 30)cv2.putText(img, cnt_str, (width - 150, 75 + (idx*40)), 0, 1, [255, 255, 255], thickness = 2, lineType = cv2.LINE_AA)for idx, (key, value) in enumerate(object_counter.items()):cnt_str1 = str(key) + ":" +str(value)cv2.line(img, (20,25), (500,25), [85,45,255], 40)cv2.putText(img, f'Numbers of Vehicles Leaving', (11, 35), 0, 1, [225, 255, 255], thickness=2, lineType=cv2.LINE_AA)    cv2.line(img, (20,65+ (idx*40)), (127,65+ (idx*40)), [85,45,255], 30)cv2.putText(img, cnt_str1, (11, 75+ (idx*40)), 0, 1, [225, 255, 255], thickness=2, lineType=cv2.LINE_AA)return imgclass SegmentationPredictor(DetectionPredictor):def postprocess(self, preds, img, orig_img):masks = []# TODO: filter by classesp = ops.non_max_suppression(preds[0],self.args.conf,self.args.iou,agnostic=self.args.agnostic_nms,max_det=self.args.max_det,nm=32)proto = preds[1][-1]for i, pred in enumerate(p):shape = orig_img[i].shape if self.webcam else orig_img.shapeif not len(pred):continueif self.args.retina_masks:pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()masks.append(ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], shape[:2]))  # HWCelse:masks.append(ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True))  # HWCpred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()return (p, masks)def write_results(self, idx, preds, batch):p, im, im0 = batchlog_string = ""if len(im.shape) == 3:im = im[None]  # expand for batch dimself.seen += 1if self.webcam:  # batch_size >= 1log_string += f'{idx}: 'frame = self.dataset.countelse:frame = getattr(self.dataset, 'frame', 0)self.data_path = pself.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')log_string += '%gx%g ' % im.shape[2:]  # print stringself.annotator = self.get_annotator(im0)preds, masks = predsdet = preds[idx]if len(det) == 0:return log_string# Segmentsmask = masks[idx]if self.args.save_txt:segments = [ops.scale_segments(im0.shape if self.args.retina_masks else im.shape[2:], x, im0.shape, normalize=True)for x in reversed(ops.masks2segments(mask))]# Print resultsfor c in det[:, 5].unique():n = (det[:, 5] == c).sum()  # detections per classlog_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "  # add to string# Mask plottingself.annotator.masks(mask,colors=[colors(x, True) for x in det[:, 5]],im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(self.device).permute(2, 0, 1).flip(0).contiguous() /255 if self.args.retina_masks else im[idx])det = reversed(det[:, :6])self.all_outputs.append([det, mask])xywh_bboxs = []confs = []oids = []outputs = []# Write resultsfor j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):x_c, y_c, bbox_w, bbox_h = xyxy_to_xywh(*xyxy)xywh_obj = [x_c, y_c, bbox_w, bbox_h]xywh_bboxs.append(xywh_obj)confs.append([conf.item()])oids.append(int(cls))xywhs = torch.Tensor(xywh_bboxs)confss = torch.Tensor(confs)outputs = deepsort.update(xywhs, confss, oids, im0)if len(outputs) > 0:bbox_xyxy = outputs[:, :4]identities = outputs[:, -2]object_id = outputs[:, -1]draw_boxes(im0, bbox_xyxy, self.model.names, object_id,identities)return log_string@hydra.main(version_base=None, config_path=str(DEFAULT_CONFIG.parent), config_name=DEFAULT_CONFIG.name)
def predict(cfg):init_tracker()cfg.model = cfg.model or "yolov8n-seg.pt"cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2)  # check image sizecfg.source = cfg.source if cfg.source is not None else ROOT / "assets"predictor = SegmentationPredictor(cfg)predictor()if __name__ == "__main__":predict()

这里给的是对象分割和 DeepSORT 跟踪(ID + 轨迹)和车辆计数

没有分割在detect目录下,自行测试。

测试结果

如有侵权,或需要完整代码,请及时联系博主。

这篇关于AI项目二十:基于YOLOv8实例分割的DeepSORT多目标跟踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/945997

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

springboot项目如何开启https服务

《springboot项目如何开启https服务》:本文主要介绍springboot项目如何开启https服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录springboot项目开启https服务1. 生成SSL证书密钥库使用keytool生成自签名证书将

将Java项目提交到云服务器的流程步骤

《将Java项目提交到云服务器的流程步骤》所谓将项目提交到云服务器即将你的项目打成一个jar包然后提交到云服务器即可,因此我们需要准备服务器环境为:Linux+JDK+MariDB(MySQL)+Gi... 目录1. 安装 jdk1.1 查看 jdk 版本1.2 下载 jdk2. 安装 mariadb(my

Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案

《Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案》:本文主要介绍Vue3组件中getCurrentInstance()获取App实例,但是返回nu... 目录vue3组件中getCurrentInstajavascriptnce()获取App实例,但是返回n

Node.js 数据库 CRUD 项目示例详解(完美解决方案)

《Node.js数据库CRUD项目示例详解(完美解决方案)》:本文主要介绍Node.js数据库CRUD项目示例详解(完美解决方案),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考... 目录项目结构1. 初始化项目2. 配置数据库连接 (config/db.js)3. 创建模型 (models/

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.