CMUS狮身人面像(六)-调整语音识别准确性

2024-04-29 07:20

本文主要是介绍CMUS狮身人面像(六)-调整语音识别准确性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

调整语音识别准确性


  • 精度差的原因
  • 测试数据库设置
  • 运行测试

语音识别的准确性并不总是很高。

首先,重要的是要了解您的准确性是否只是低于预期,还是总体上非常低。如果总体精度非常低,则您很可能错误配置了解码器。如果低于预期,可以采用各种方法来改进。

您应该做的第一件事是收集测试样本数据库并测量识别准确性。您需要将话语转储到 wav 文件中,编写参考文本并使用解码器对其进行解码。然后使用 Sphinxtrain 的工具计算字错误率 (WER) word_align.pl。测试数据库的大小取决于准确性,但通常有 30 分钟的转录音频就足以可靠地测试识别器的准确性。

只有拥有测试数据库,您才能继续优化识别精度。

精度差的原因

精度不佳的主要原因是:

  • 传入音频的采样率和通道数不匹配或传入音频带宽不匹配。它必须是 16 kHz(或 8 kHz,具体取决于训练数据)、16 位 Mono(= 单通道)Little-Endian 文件。您需要通过重采样来修复源的采样率(仅当其采样率高于训练数据的采样率时)。您不应该对文件进行上采样并使用在更高采样率的音频上训练的声学模型对其进行解码。可以使用命令验证音频文件格式(采样率、通道数)

    sox --i /path/to/audio/file

    在此处查找更多信息: 什么是采样率?

  • 声学模型不匹配。为了验证这个假设,您需要根据测试数据库文本构建一个语言模型。这样的语言模型会非常好,并且一定会给你很高的准确率。如果精度仍然较低,则需要在声学模型上进行更多工作。您可以使用声学模型自适应来提高准确性。

  • 语言模型不匹配。您可以创建自己的语言模型来匹配您尝试解码的词汇。

  • 字典中的不匹配以及单词的发音。在这种情况下,必须在语音词典中完成一些工作。

测试数据库设置

要测试识别,您需要使用所需的参数配置解码,特别是,您需要有一个语言模型<your.lm>。有关更多详细信息,请参阅构建语言模型页面。

创建一个fileids文件test.fileids

test1
test2

创建转录文件test.transcription

some text (test1)
some text (test2)

将音频文件放入wav文件夹中。确保这些文件具有正确的格式和采样率。

└─ wav├─ test1.wav└─ test2.wav

运行测试

现在,让我们运行解码器:

pocketsphinx_batch \-adcin yes \-cepdir wav \-cepext .wav \-ctl test.fileids \-lm `<your.lm>` \    # for example en-us.lm.bin from pocketsphinx-dict `<your.dic>` \ # for example cmudict-en-us.dict from pocketsphinx-hmm `<your_hmm>` \  # for example en-us-hyp test.hypword_align.pl test.transcription test.hyp

word_align.pl脚本是 sphinxtrain 发行版的一部分。

如果您要解码 8 kHz 文件,请务必将该选项添加-samprate 8000到上述命令!

Sphinxtrain 的脚本word-align.pl将向您报告准确的错误率,您可以使用该错误率来确定改编是否适合您。它看起来像这样:

TOTAL Words: 773 Correct: 669 Errors: 121
TOTAL Percent correct = 86.55% Error = 15.65% Accuracy = 84.35%
TOTAL Insertions: 17 Deletions: 11 Substitutions: 93

要查看解码速度,请检查 pocketsphinx 日志,它应该如下所示:

INFO: batch.c(761): 2484510: 9.09 seconds speech, 0.25 seconds CPU, 0.25 seconds wall
INFO: batch.c(763): 2484510: 0.03 xRT (CPU), 0.03 xRT (elapsed)

0.03 xRT解码速度(“记录时间的0.03倍”)。

这篇关于CMUS狮身人面像(六)-调整语音识别准确性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/945446

相关文章

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

Python批量调整Word文档中的字体、段落间距及格式

《Python批量调整Word文档中的字体、段落间距及格式》这篇文章主要为大家详细介绍了如何使用Python的docx库来批量处理Word文档,包括设置首行缩进、字体、字号、行间距、段落对齐方式等,需... 目录关键代码一级标题设置  正文设置完整代码运行结果最近关于批处理格式的问题我查了很多资料,但是都没

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time