【七十一】【算法分析与设计】467. 环绕字符串中唯一的子字符串,940. 不同的子序列 II,子串的划分,子序列的划分,区间划分---递推

本文主要是介绍【七十一】【算法分析与设计】467. 环绕字符串中唯一的子字符串,940. 不同的子序列 II,子串的划分,子序列的划分,区间划分---递推,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

467. 环绕字符串中唯一的子字符串

定义字符串 base 为一个 "abcdefghijklmnopqrstuvwxyz" 无限环绕的字符串,所以 base 看起来是这样的:

  • "...zabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcd....".

给你一个字符串 s ,请你统计并返回 s 中有多少 不同非空子串 也在 base 中出现。

示例 1:

输入:s = "a" 输出:1 解释:字符串 s 的子字符串 "a" 在 base 中出现。

示例 2:

输入:s = "cac" 输出:2 解释:字符串 s 有两个子字符串 ("a", "c") 在 base 中出现。

示例 3:

输入:s = "zab" 输出:6 解释:字符串 s 有六个子字符串 ("z", "a", "b", "za", "ab", and "zab") 在 base 中出现。

提示:

  • 1 <= s.length <= 10(5)

  • s 由小写英文字母组成

1.

子串的划分,以某个位置结尾的子串,进行子串的划分.

把所有位置结尾的子串中出现在base个数记录下来即可.

2.

只需要记录以某位置结尾往前最长的连续子串长度即可.

例如abcde,bcde,cde,de,e,最长的连续子串长度是5,依次对应五个数量.

3.

子串的划分----分治

 
#include <bits/stdc++.h>  // 引入常用的头文件
using namespace std;class Solution {
public:using ll = long long;  // 定义类型别名ll,表示长整型long longstring s;              // 定义字符串s,存储输入字符串vector<ll> dp;         // 使用动态规划存储中间结果,dp[i]存储以s[i]结尾的子串的合法子串数量vector<ll> count;      // 记录每个字母为结束字符的最长子串长度// 初始化函数,清空并重设dp和count数组void solveinit() {dp.clear();                     // 清空dp数组dp.resize(s.size(), -1);        // 重设dp数组大小,初始值为-1count.clear();                  // 清空count数组count.resize(26);               // 重设count数组大小,大小为26(26个字母)}// 深度优先搜索函数,用于计算以第i个字符结束的子串的合法子串数量ll dfs(ll i) {if (dp[i] != -1)                // 如果dp[i]已计算过,直接返回结果return dp[i];if (i - 1 >= 0) {               // 如果不是第一个字符,可以考虑前一个字符if (s[i] != 'a') {          // 当前字符不是'a'时if (s[i - 1] == s[i] - 1) {  // 如果前一个字符正好是当前字符的前一个字母dp[i] = dfs(i - 1) + 1;  // 递归计算前一个字符,并加上当前字符形成的新的子串} else {dp[i] = 1;          // 否则,当前字符自成一组}} else {if (s[i - 1] == 'z') {  // 当前字符是'a'且前一个字符是'z'dp[i] = dfs(i - 1) + 1;  // 递归计算前一个字符,并加上当前字符形成的新的子串} else {dp[i] = 1;          // 否则,当前字符自成一组}}} else {dp[i] = 1;                  // 如果是第一个字符,只有当前字符自身一个子串}return dp[i];                   // 返回以s[i]结尾的合法子串数量}// 主函数,计算字符串s中有多少不同非空子串也在环绕字符串base中出现int findSubstringInWraproundString(string _s) {s = _s;                         // 存储输入字符串solveinit();                    // 初始化dp和count数组for (ll i = 0; i < s.size(); i++) {dfs(i);                     // 对每个字符调用dfs函数,计算以每个字符结尾的子串数量}ll ans = 0;vector<bool> visited(26);       // 标记数组,记录每个字符是否被访问过for (ll i = 0; i < s.size(); i++) {int index = s[i] - 'a';     // 当前字符对应的索引count[index] = max(count[index], dp[i]);  // 更新以当前字符结尾的最大子串数量}for (ll i = 0; i < 26; i++) {ans += count[i];            // 累加每个字母对应的最长子串数量}return ans;                     // 返回结果}
};

940. 不同的子序列 II

给定一个字符串 s,计算 s不同非空子序列 的个数。因为结果可能很大,所以返回答案需要对 10^9 + 7 取余

字符串的 子序列 是经由原字符串删除一些(也可能不删除)字符但不改变剩余字符相对位置的一个新字符串。

  • 例如,"ace""abcde" 的一个子序列,但 "aec" 不是。

示例 1:

输入:s = "abc" 输出:7 解释:7 个不同的子序列分别是 "a", "b", "c", "ab", "ac", "bc", 以及 "abc"。

示例 2:

输入:s = "aba" 输出:6 解释:6 个不同的子序列分别是 "a", "b", "ab", "ba", "aa" 以及 "aba"。

示例 3:

输入:s = "aaa" 输出:3 解释:3 个不同的子序列分别是 "a", "aa" 以及 "aaa"。

提示:

  • 1 <= s.length <= 2000

  • s 仅由小写英文字母组成

1.

假设s长度为n.

区间[0,n-1]的字符串的不同的子序列个数是多少.

区间[0,n-2]的字符串的不同的子序列个数是多少.

可以选择由[0,n-2]区间字符串的不同子序列个数多少推导出[0,n-1]的字符串的不同的子序列个数是多少.

因为新增的子序列是[0,n-2]区间所有子序列后面全部加上n-1位置的字符所组成的子序列加上n-1位置单独的字符子序列.

只需要完成新增子序列与老子序列的去重操作即可.

新增子序列都是以n-1位置结尾的子序列,一定是包含了所有的以n-1字符结尾的可能性.

所以老子序列中去掉以n-1字符结尾的可能性加上其他字符结尾的个数即可.

2.

子序列的划分----分治

长度的划分,递推,增加的子序列很好计算.

 
class Solution {
public:using ll = long long; // 定义类型别名 ll,表示长整型 long longstring s; // 用于存储输入的字符串vector<ll> count; // 使用一个数组来统计每个字符作为子序列结尾的不同子序列个数const ll MOD = 1e9 + 7; // 定义常量 MOD,取值为 10^9 + 7,用于结果的模运算void solveinit() {count.clear(); // 清空 count 数组count.resize(26); // 将 count 数组大小重新设置为26(对应26个英文字母)}int distinctSubseqII(string _s) {s = _s; // 将传入的字符串赋值给成员变量 ssolveinit(); // 调用初始化函数,准备 count 数组for (ll i = 0; i < s.size(); i++) { // 遍历字符串 s 的每个字符ll all = 0; // 初始化 all 变量,用来统计到当前字符为止的所有可能子序列的数量for (ll j = 0; j < count.size(); j++) { // 遍历 count 数组,累加之前所有字符的子序列总数all = (all + count[j]) % MOD; // 将累加结果进行模运算,防止溢出}ll index = s[i] - 'a'; // 计算当前字符在 count 数组中的索引位置count[index] = (all + 1) % MOD; // 更新当前字符的子序列数。加1是因为当前字符本身也是一个子序列}ll ans = 0; // 初始化答案变量,用来存储最终的不同子序列总数for (ll i = 0; i < count.size(); i++) { // 遍历 count 数组,将所有字符的子序列数累加ans = (ans + count[i]) % MOD; // 累加的同时进行模运算,防止溢出}return ans; // 返回最终计算的结果}
};

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【七十一】【算法分析与设计】467. 环绕字符串中唯一的子字符串,940. 不同的子序列 II,子串的划分,子序列的划分,区间划分---递推的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943715

相关文章

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java String字符串的常用使用方法

《JavaString字符串的常用使用方法》String是JDK提供的一个类,是引用类型,并不是基本的数据类型,String用于字符串操作,在之前学习c语言的时候,对于一些字符串,会初始化字符数组表... 目录一、什么是String二、如何定义一个String1. 用双引号定义2. 通过构造函数定义三、St

golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法

《golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法》:本文主要介绍golang获取当前时间、时间戳和时间字符串及它们之间的相互转换,本文通过实例代码给大家介绍的非常详细,感兴趣... 目录1、获取当前时间2、获取当前时间戳3、获取当前时间的字符串格式4、它们之间的相互转化上篇文章给大家介

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n