小龙虾优化算法(Crayfish Optimization Algorithm,COA)

2024-04-28 15:36

本文主要是介绍小龙虾优化算法(Crayfish Optimization Algorithm,COA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

小龙虾优化算法(Crayfish Optimization Algorithm,COA)

  • 前言
  • 一、小龙虾优化算法的实现
    • 1.初始化阶段
    • 2.定义温度和小龙虾的觅食量
    • 3.避暑阶段(探索阶段)
    • 4.竞争阶段(开发阶段)
    • 5.觅食阶段(开发阶段)
  • 二、小龙虾优化算法的流程
  • 三、小龙虾优化算法的在CEC2020测试结果。
    • 3.1 CEC2020部分测试函数描述
    • 3.2 CEC2020部分测试函数三维图像显示
    • 3.3 COA在CEC2020的测试效果
  • 四、matlab代码
  • 五、参考文献


前言

小龙虾优化算法(Crayfish Optimization Algorithm,COA)是2023年9月提出的一种元启发式优化算法。COA的灵感来源于小龙虾的避暑、竞争和觅食行为。这三种行为对应算法的避暑阶段、竞争阶段和觅食阶段。其中,竞争阶段和觅食阶段为小龙虾优化算法的开发阶段,避暑阶段是小龙虾优化算法的探索阶段。COA具有较好的收敛效果,在CEC2020有着较好的优化效果。


提示:本文使用的是迭代次数的代码,没有换成评价次数。
如有疑问可联系尭食

一、小龙虾优化算法的实现

小龙虾优化算法的探索和开发受温度调节,温度是一个随机数。当温度过高时,小龙虾会选择洞穴进行避暑。如果没有其他的小龙虾竞争洞穴,小龙虾会直接进入洞穴,这是小龙虾优化算法的避暑阶段。如果有其他的小龙虾竞争洞穴,则小龙虾会相互竞争,这时小龙虾优化算法的竞争阶段。当温度适宜时,小龙虾优化算法进入觅食阶段。在觅食阶段,小龙虾会根据食物的大小选择直接吃食物或者先撕碎食物再吃食物。其中,小龙虾的进食与觅食量有关。通过温度平衡算法的探索和开发能力,使小龙虾优化算法具有更好的优化效果,能够更快的寻找到一个优异的适应度值。下面是小龙虾优化算法的具体介绍。

1.初始化阶段

在多维优化问题中,每只小龙虾表示一个1× d i m dim dim的矩阵,每列矩阵为一个问题的解决方案。COA的初始化是在上下界之间随机生成 N N N组候选解 X X X N N N是种群大小、 d i m dim dim是种群维数。COA初始化如下:
X = [ X 1 , X 2 , ⋯ , X N ] (1) X = [{X_1},{X_2}, \cdots ,{X_N}]\tag{1} X=[X1,X2,,XN](1) X i , j = l b j + ( u b j − l b j ) × r a n d (2) {X_{i,j}} = l{b_j} + (u{b_j} - l{b_j}) \times rand \tag{2} Xi,j=lbj+(ubjlbj)×rand(2)
其中 l b j lb_j lbj表示第j维的下界, u b j ub_j ubj表示第j维的上界, r a n d rand rand是[0,1]的随机数。

2.定义温度和小龙虾的觅食量

温度的改变会影响小龙虾的行为,使小龙虾进行不同的阶段温度的定义如等式3所示。当温度超过30℃时,小龙虾会选择一个凉爽的地方避暑。在适当的温度下,小龙虾就会进行觅食行为。小龙虾的取食量受温度的影响。小龙虾的取食范围在15~30℃之间,25℃为最好。因此,小龙虾的摄食量可以近似于正态分布,从而使摄食量受到温度的影响。小龙虾摄食量的数学模型和不同温度对应的摄食量如下图所示。
t e m p = r a n d × 15 + 20 (3) temp = rand \times 15 + 20\tag{3} temp=rand×15+20(3)
其中, t e m p temp temp表示小龙虾所在环境的温度。
p = C 1 × ( 1 2 × π × σ ) × exp ⁡ ( − ( t e m p − μ ) 2 2 σ 2 ) (4) p = {C_1} \times ({1 \over {\sqrt {2 \times \pi } \times \sigma )}} \times \exp ( - {{{{(temp - \mu )}^2}} \over {2{\sigma ^2}}})\tag{4} p=C1×(2×π ×σ)1×exp(2σ2(tempμ)2)(4)
其中, µ µ µ是指最适合小龙虾的温度,分别用 σ σ σ C 1 C_1 C1来控制不同温度下小龙虾的摄入量.
Alt

3.避暑阶段(探索阶段)

当温度大于30度,表示温度过高。此时,小龙虾会进入洞穴避暑。洞穴的定义如下所示:
X s h a d e = ( X G + X L ) / 2 (5) {X_{shade}} = ({X_G} + {X_L})/2\tag{5} Xshade=(XG+XL)/2(5)
其中 X G X_G XG表示通过迭代次数所得到的最优位置,XL表示上一代种群更新后获得的最优位置。
小龙虾争夺洞穴是一个随机事件。在COA中,当 r a n d rand rand<0.5,这意味着没有其他的小龙虾争夺洞穴,则小龙虾直接进入洞穴避暑,如下图所示。小龙虾进入洞穴避暑如公式所示:
X i , j t + 1 = X i , j t + C 2 × r a n d × ( X s h a d e − X i , j t ) (6) X_{i,j}^{t + 1} = X_{i,j}^t + {C_2} \times rand \times ({X_{shade}} - X_{i,j}^t)\tag{6} Xi,jt+1=Xi,jt+C2×rand×(XshadeXi,jt)(6)
其中 t t t表示当前迭代次数, t + 1 t+1 t+1表示下一代迭代次数, C 2 C_2 C2为递减曲线。
C 2 = 2 − ( t / T ) (7) {C_2} = 2 - (t/T)\tag{7} C2=2(t/T)(7)
其中, T T T表示最大迭代次数。
在这里插入图片描述

4.竞争阶段(开发阶段)

当温度大于30度, r a n d rand rand≥0.5。这意味着其他的小龙虾也选择了这个洞穴。这时,它们会竞争这个洞穴,如下图所示。它们通过以下公式争夺洞穴。
X i , j t + 1 = X i , j t − X z , j t + X s h a d e (8) X_{i,j}^{t + 1} = X_{i,j}^t - X_{z,j}^t + {X_{shade}}\tag{8} Xi,jt+1=Xi,jtXz,jt+Xshade(8) z = r o u n d ( r a n d × ( N − 1 ) ) + 1 (9) z = round(rand \times (N - 1)) + 1\tag{9} z=round(rand×(N1))+1(9)
其中, z z z表示小龙虾的随机个体。
在这里插入图片描述

5.觅食阶段(开发阶段)

当温度小于等于30时,该温度适合小龙虾进食。这时,小龙虾会去寻找食物觅食。在进食的时候,小龙虾会根据食物的大小选择是否撕碎食物。如果食物大小合适,小龙虾会使用直接摄取食物。如果食物太大,小龙虾会使用鳌足撕碎食物再使用第二第三步行足交替夹取食物摄取。食物的定义为:
X f o o d = X G (10) {X_{food}} = {X_G}\tag{10} Xfood=XG(10)
食物大小的定义为:
Q = C 3 × r a n d × ( f i t n e s s i / f i t n e s s f o o d ) (11) Q = {C_3} \times rand \times (fitnes{s_i}/fitnes{s_{food}})\tag{11} Q=C3×rand×(fitnessi/fitnessfood)(11)
其中 C 3 C_3 C3为食物因子,代表最大的食物,值为常数3。 f i t n e s s i fitness_i fitnessi代表第i只小龙虾的适应度值, f i t n e s s f o o d fitness_{food} fitnessfood代表食物所在位置的适应度值。
Q > ( C 3 + 1 ) / 2 Q>(C3+1)/2 Q>(C3+1)/2,表示食物太大。这时,小龙虾会通过下面公式撕碎食物。
X f o o d = exp ⁡ ( − 1 Q ) × X f o o d (12) {X_{food}} = \exp ( - {1 \over Q}) \times {X_{food}}\tag{12} Xfood=exp(Q1)×Xfood(12)
撕碎食物后,小龙虾会使用第二第三步行足交替夹取食物摄取。为了模拟交替摄食行为,在等式中采用正弦函数和余弦函数的组合来模拟交替过程,如图所示。不仅如此,小龙虾获得的食物也与食物摄入量有关。摄食的等式如下所示:
X i , j t + 1 = X i , j t + X f o o d × p × ( cos ⁡ ( 2 × π × r a n d ) − sin ⁡ ( 2 × π × r a n d ) ) (13) X_{i,j}^{t + 1} = X_{_{i,j}}^t + {X_{food}} \times p \times (\cos (2 \times \pi \times rand) - \sin (2 \times \pi \times rand))\tag{13} Xi,jt+1=Xi,jt+Xfood×p×(cos(2×π×rand)sin(2×π×rand))(13)
Q ≤ ( C 3 + 1 ) / 2 Q≤(C3+1)/2 Q(C3+1)/2,小龙虾会直接向食物移动并进食。等式如下:
X i , j t + 1 = ( X i , j t − X f o o d ) × p + p × r a n d × X i , j t (14) X_{i,j}^{t + 1} = (X_{i,j}^t - {X_{food}}) \times p + p \times rand \times X_{i,j}^t\tag{14} Xi,jt+1=(Xi,jtXfood)×p+p×rand×Xi,jt(14)

二、小龙虾优化算法的流程

步骤1.初始化种群,计算种群的适应度值并获得 X G X_G XG X L X_L XL
步骤2.根据等式3定义小龙虾的生存环境.
步骤3.当温度大于30度且 r a n d rand rand<0.5,COA根据等式6获得新的位置并进入步骤8。
步骤4.当温度大于30度且 r a n d rand rand≥0.5,COA根据等式8获得新的位置并进入步骤8。
步骤5.当温度小于等于30时,COA进入觅食阶段,根据等式4和等式11定义摄食量 p p p和食物大小 Q Q Q
步骤6.如果Q>( C 3 C_3 C3+1)/2,根据等式12撕碎食物。之后通过等式13摄食获得新位置并进入步骤8。。
步骤7.如果Q≤( C 3 C_3 C3+1)/2,通过等式14摄食获得新位置并进入步骤8。。
步骤8.评估种群是否退出循环。如果没有返回步骤2。
步骤9.输出最佳位置的个体。

在这里插入图片描述

三、小龙虾优化算法的在CEC2020测试结果。

3.1 CEC2020部分测试函数描述

名称公式维度变量范围理论最优
F1 F 1 ( x ) = f 1 ( M ( x − o 1 ) ) + F 1 ∗ {F_1}(x) = {f_1}(M(x - {o_1})) + {F_1}* F1(x)=f1(M(xo1))+F130[-100,100]100
F2 F 2 ( x ) = f 11 ( M ( 1000 ( x − o 11 ) 100 ) ) + F 2 ∗ {F_2}(x) = {f_{11}}({\rm{M}}({{1000(x - {o_{11}})} \over {100}})) + {F_2} * F2(x)=f11(M(1001000(xo11)))+F230[-100,100]100
F3 F 3 ( x ) = f 10 ( M ( 600 ( x − o 7 ) 100 ) ) + F 3 ∗ {F_3}(x) = {f_{10}}(M({{600(x - {o_7})} \over {100}})) + {F_3}* F3(x)=f10(M(100600(xo7)))+F330[-100,100]100

3.2 CEC2020部分测试函数三维图像显示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 COA在CEC2020的测试效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

四、matlab代码

COA的代码已公布,可自行下载,也欢迎大家进行修改Crayfish Optimization Algorithm

五、参考文献

[1] 贾鹤鸣, 智能优化算法及 MATLAB 实现[M], 清华大学出版社, 2024.
[2] Jia, Heming, Honghua Rao, Changsheng Wen, and Seyedali Mirjalili. Crayfish optimization algorithm[J]. Artificial Intelligence Review. 56(Suppl 2), pp.1919-1979.

这篇关于小龙虾优化算法(Crayfish Optimization Algorithm,COA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943614

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.