小龙虾优化算法(Crayfish Optimization Algorithm,COA)

2024-04-28 15:36

本文主要是介绍小龙虾优化算法(Crayfish Optimization Algorithm,COA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

小龙虾优化算法(Crayfish Optimization Algorithm,COA)

  • 前言
  • 一、小龙虾优化算法的实现
    • 1.初始化阶段
    • 2.定义温度和小龙虾的觅食量
    • 3.避暑阶段(探索阶段)
    • 4.竞争阶段(开发阶段)
    • 5.觅食阶段(开发阶段)
  • 二、小龙虾优化算法的流程
  • 三、小龙虾优化算法的在CEC2020测试结果。
    • 3.1 CEC2020部分测试函数描述
    • 3.2 CEC2020部分测试函数三维图像显示
    • 3.3 COA在CEC2020的测试效果
  • 四、matlab代码
  • 五、参考文献


前言

小龙虾优化算法(Crayfish Optimization Algorithm,COA)是2023年9月提出的一种元启发式优化算法。COA的灵感来源于小龙虾的避暑、竞争和觅食行为。这三种行为对应算法的避暑阶段、竞争阶段和觅食阶段。其中,竞争阶段和觅食阶段为小龙虾优化算法的开发阶段,避暑阶段是小龙虾优化算法的探索阶段。COA具有较好的收敛效果,在CEC2020有着较好的优化效果。


提示:本文使用的是迭代次数的代码,没有换成评价次数。
如有疑问可联系尭食

一、小龙虾优化算法的实现

小龙虾优化算法的探索和开发受温度调节,温度是一个随机数。当温度过高时,小龙虾会选择洞穴进行避暑。如果没有其他的小龙虾竞争洞穴,小龙虾会直接进入洞穴,这是小龙虾优化算法的避暑阶段。如果有其他的小龙虾竞争洞穴,则小龙虾会相互竞争,这时小龙虾优化算法的竞争阶段。当温度适宜时,小龙虾优化算法进入觅食阶段。在觅食阶段,小龙虾会根据食物的大小选择直接吃食物或者先撕碎食物再吃食物。其中,小龙虾的进食与觅食量有关。通过温度平衡算法的探索和开发能力,使小龙虾优化算法具有更好的优化效果,能够更快的寻找到一个优异的适应度值。下面是小龙虾优化算法的具体介绍。

1.初始化阶段

在多维优化问题中,每只小龙虾表示一个1× d i m dim dim的矩阵,每列矩阵为一个问题的解决方案。COA的初始化是在上下界之间随机生成 N N N组候选解 X X X N N N是种群大小、 d i m dim dim是种群维数。COA初始化如下:
X = [ X 1 , X 2 , ⋯ , X N ] (1) X = [{X_1},{X_2}, \cdots ,{X_N}]\tag{1} X=[X1,X2,,XN](1) X i , j = l b j + ( u b j − l b j ) × r a n d (2) {X_{i,j}} = l{b_j} + (u{b_j} - l{b_j}) \times rand \tag{2} Xi,j=lbj+(ubjlbj)×rand(2)
其中 l b j lb_j lbj表示第j维的下界, u b j ub_j ubj表示第j维的上界, r a n d rand rand是[0,1]的随机数。

2.定义温度和小龙虾的觅食量

温度的改变会影响小龙虾的行为,使小龙虾进行不同的阶段温度的定义如等式3所示。当温度超过30℃时,小龙虾会选择一个凉爽的地方避暑。在适当的温度下,小龙虾就会进行觅食行为。小龙虾的取食量受温度的影响。小龙虾的取食范围在15~30℃之间,25℃为最好。因此,小龙虾的摄食量可以近似于正态分布,从而使摄食量受到温度的影响。小龙虾摄食量的数学模型和不同温度对应的摄食量如下图所示。
t e m p = r a n d × 15 + 20 (3) temp = rand \times 15 + 20\tag{3} temp=rand×15+20(3)
其中, t e m p temp temp表示小龙虾所在环境的温度。
p = C 1 × ( 1 2 × π × σ ) × exp ⁡ ( − ( t e m p − μ ) 2 2 σ 2 ) (4) p = {C_1} \times ({1 \over {\sqrt {2 \times \pi } \times \sigma )}} \times \exp ( - {{{{(temp - \mu )}^2}} \over {2{\sigma ^2}}})\tag{4} p=C1×(2×π ×σ)1×exp(2σ2(tempμ)2)(4)
其中, µ µ µ是指最适合小龙虾的温度,分别用 σ σ σ C 1 C_1 C1来控制不同温度下小龙虾的摄入量.
Alt

3.避暑阶段(探索阶段)

当温度大于30度,表示温度过高。此时,小龙虾会进入洞穴避暑。洞穴的定义如下所示:
X s h a d e = ( X G + X L ) / 2 (5) {X_{shade}} = ({X_G} + {X_L})/2\tag{5} Xshade=(XG+XL)/2(5)
其中 X G X_G XG表示通过迭代次数所得到的最优位置,XL表示上一代种群更新后获得的最优位置。
小龙虾争夺洞穴是一个随机事件。在COA中,当 r a n d rand rand<0.5,这意味着没有其他的小龙虾争夺洞穴,则小龙虾直接进入洞穴避暑,如下图所示。小龙虾进入洞穴避暑如公式所示:
X i , j t + 1 = X i , j t + C 2 × r a n d × ( X s h a d e − X i , j t ) (6) X_{i,j}^{t + 1} = X_{i,j}^t + {C_2} \times rand \times ({X_{shade}} - X_{i,j}^t)\tag{6} Xi,jt+1=Xi,jt+C2×rand×(XshadeXi,jt)(6)
其中 t t t表示当前迭代次数, t + 1 t+1 t+1表示下一代迭代次数, C 2 C_2 C2为递减曲线。
C 2 = 2 − ( t / T ) (7) {C_2} = 2 - (t/T)\tag{7} C2=2(t/T)(7)
其中, T T T表示最大迭代次数。
在这里插入图片描述

4.竞争阶段(开发阶段)

当温度大于30度, r a n d rand rand≥0.5。这意味着其他的小龙虾也选择了这个洞穴。这时,它们会竞争这个洞穴,如下图所示。它们通过以下公式争夺洞穴。
X i , j t + 1 = X i , j t − X z , j t + X s h a d e (8) X_{i,j}^{t + 1} = X_{i,j}^t - X_{z,j}^t + {X_{shade}}\tag{8} Xi,jt+1=Xi,jtXz,jt+Xshade(8) z = r o u n d ( r a n d × ( N − 1 ) ) + 1 (9) z = round(rand \times (N - 1)) + 1\tag{9} z=round(rand×(N1))+1(9)
其中, z z z表示小龙虾的随机个体。
在这里插入图片描述

5.觅食阶段(开发阶段)

当温度小于等于30时,该温度适合小龙虾进食。这时,小龙虾会去寻找食物觅食。在进食的时候,小龙虾会根据食物的大小选择是否撕碎食物。如果食物大小合适,小龙虾会使用直接摄取食物。如果食物太大,小龙虾会使用鳌足撕碎食物再使用第二第三步行足交替夹取食物摄取。食物的定义为:
X f o o d = X G (10) {X_{food}} = {X_G}\tag{10} Xfood=XG(10)
食物大小的定义为:
Q = C 3 × r a n d × ( f i t n e s s i / f i t n e s s f o o d ) (11) Q = {C_3} \times rand \times (fitnes{s_i}/fitnes{s_{food}})\tag{11} Q=C3×rand×(fitnessi/fitnessfood)(11)
其中 C 3 C_3 C3为食物因子,代表最大的食物,值为常数3。 f i t n e s s i fitness_i fitnessi代表第i只小龙虾的适应度值, f i t n e s s f o o d fitness_{food} fitnessfood代表食物所在位置的适应度值。
Q > ( C 3 + 1 ) / 2 Q>(C3+1)/2 Q>(C3+1)/2,表示食物太大。这时,小龙虾会通过下面公式撕碎食物。
X f o o d = exp ⁡ ( − 1 Q ) × X f o o d (12) {X_{food}} = \exp ( - {1 \over Q}) \times {X_{food}}\tag{12} Xfood=exp(Q1)×Xfood(12)
撕碎食物后,小龙虾会使用第二第三步行足交替夹取食物摄取。为了模拟交替摄食行为,在等式中采用正弦函数和余弦函数的组合来模拟交替过程,如图所示。不仅如此,小龙虾获得的食物也与食物摄入量有关。摄食的等式如下所示:
X i , j t + 1 = X i , j t + X f o o d × p × ( cos ⁡ ( 2 × π × r a n d ) − sin ⁡ ( 2 × π × r a n d ) ) (13) X_{i,j}^{t + 1} = X_{_{i,j}}^t + {X_{food}} \times p \times (\cos (2 \times \pi \times rand) - \sin (2 \times \pi \times rand))\tag{13} Xi,jt+1=Xi,jt+Xfood×p×(cos(2×π×rand)sin(2×π×rand))(13)
Q ≤ ( C 3 + 1 ) / 2 Q≤(C3+1)/2 Q(C3+1)/2,小龙虾会直接向食物移动并进食。等式如下:
X i , j t + 1 = ( X i , j t − X f o o d ) × p + p × r a n d × X i , j t (14) X_{i,j}^{t + 1} = (X_{i,j}^t - {X_{food}}) \times p + p \times rand \times X_{i,j}^t\tag{14} Xi,jt+1=(Xi,jtXfood)×p+p×rand×Xi,jt(14)

二、小龙虾优化算法的流程

步骤1.初始化种群,计算种群的适应度值并获得 X G X_G XG X L X_L XL
步骤2.根据等式3定义小龙虾的生存环境.
步骤3.当温度大于30度且 r a n d rand rand<0.5,COA根据等式6获得新的位置并进入步骤8。
步骤4.当温度大于30度且 r a n d rand rand≥0.5,COA根据等式8获得新的位置并进入步骤8。
步骤5.当温度小于等于30时,COA进入觅食阶段,根据等式4和等式11定义摄食量 p p p和食物大小 Q Q Q
步骤6.如果Q>( C 3 C_3 C3+1)/2,根据等式12撕碎食物。之后通过等式13摄食获得新位置并进入步骤8。。
步骤7.如果Q≤( C 3 C_3 C3+1)/2,通过等式14摄食获得新位置并进入步骤8。。
步骤8.评估种群是否退出循环。如果没有返回步骤2。
步骤9.输出最佳位置的个体。

在这里插入图片描述

三、小龙虾优化算法的在CEC2020测试结果。

3.1 CEC2020部分测试函数描述

名称公式维度变量范围理论最优
F1 F 1 ( x ) = f 1 ( M ( x − o 1 ) ) + F 1 ∗ {F_1}(x) = {f_1}(M(x - {o_1})) + {F_1}* F1(x)=f1(M(xo1))+F130[-100,100]100
F2 F 2 ( x ) = f 11 ( M ( 1000 ( x − o 11 ) 100 ) ) + F 2 ∗ {F_2}(x) = {f_{11}}({\rm{M}}({{1000(x - {o_{11}})} \over {100}})) + {F_2} * F2(x)=f11(M(1001000(xo11)))+F230[-100,100]100
F3 F 3 ( x ) = f 10 ( M ( 600 ( x − o 7 ) 100 ) ) + F 3 ∗ {F_3}(x) = {f_{10}}(M({{600(x - {o_7})} \over {100}})) + {F_3}* F3(x)=f10(M(100600(xo7)))+F330[-100,100]100

3.2 CEC2020部分测试函数三维图像显示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 COA在CEC2020的测试效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

四、matlab代码

COA的代码已公布,可自行下载,也欢迎大家进行修改Crayfish Optimization Algorithm

五、参考文献

[1] 贾鹤鸣, 智能优化算法及 MATLAB 实现[M], 清华大学出版社, 2024.
[2] Jia, Heming, Honghua Rao, Changsheng Wen, and Seyedali Mirjalili. Crayfish optimization algorithm[J]. Artificial Intelligence Review. 56(Suppl 2), pp.1919-1979.

这篇关于小龙虾优化算法(Crayfish Optimization Algorithm,COA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943614

相关文章

uniapp接入微信小程序原生代码配置方案(优化版)

uniapp项目需要把微信小程序原生语法的功能代码嵌套过来,无需把原生代码转换为uniapp,可以配置拷贝的方式集成过来 1、拷贝代码包到src目录 2、vue.config.js中配置原生代码包直接拷贝到编译目录中 3、pages.json中配置分包目录,原生入口组件的路径 4、manifest.json中配置分包,使用原生组件 5、需要把原生代码包里的页面修改成组件的方

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

大林 PID 算法

Dahlin PID算法是一种用于控制和调节系统的比例积分延迟算法。以下是一个简单的C语言实现示例: #include <stdio.h>// DALIN PID 结构体定义typedef struct {float SetPoint; // 设定点float Proportion; // 比例float Integral; // 积分float Derivative; // 微分flo

服务器雪崩的应对策略之----SQL优化

SQL语句的优化是数据库性能优化的重要方面,特别是在处理大规模数据或高频访问时。作为一个C++程序员,理解SQL优化不仅有助于编写高效的数据库操作代码,还能增强对系统性能瓶颈的整体把握。以下是详细的SQL语句优化技巧和策略: SQL优化 1. 选择合适的数据类型2. 使用索引3. 优化查询4. 范式化和反范式化5. 查询重写6. 使用缓存7. 优化数据库设计8. 分析和监控9. 调整配置1、

Java中如何优化数据库查询性能?

Java中如何优化数据库查询性能? 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨在Java中如何优化数据库查询性能,这是提升应用程序响应速度和用户体验的关键技术。 优化数据库查询性能的重要性 在现代应用开发中,数据库查询是最常见的操作之一。随着数据量的增加和业务复杂度的提升,数据库查询的性能优化显得尤为重

LeetCode 算法:二叉树的中序遍历 c++

原题链接🔗:二叉树的中序遍历 难度:简单⭐️ 题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 示例 1: 输入:root = [1,null,2,3] 输出:[1,3,2] 示例 2: 输入:root = [] 输出:[] 示例 3: 输入:root = [1] 输出:[1] 提示: 树中节点数目在范围 [0, 100] 内 -100 <= Node.

【Java算法】滑动窗口 下

​ ​    🔥个人主页: 中草药 🔥专栏:【算法工作坊】算法实战揭秘 🦌一.水果成篮 题目链接:904.水果成篮 ​ 算法原理 算法原理是使用“滑动窗口”(Sliding Window)策略,结合哈希表(Map)来高效地统计窗口内不同水果的种类数量。以下是详细分析: 初始化:创建一个空的哈希表 map 用来存储每种水果的数量,初始化左右指针 left

打包体积分析和优化

webpack分析工具:webpack-bundle-analyzer 1. 通过<script src="./vue.js"></script>方式引入vue、vuex、vue-router等包(CDN) // webpack.config.jsif(process.env.NODE_ENV==='production') {module.exports = {devtool: 'none

ROS2从入门到精通4-4:局部控制插件开发案例(以PID算法为例)

目录 0 专栏介绍1 控制插件编写模板1.1 构造控制插件类1.2 注册并导出插件1.3 编译与使用插件 2 基于PID的路径跟踪原理3 控制插件开发案例(PID算法)常见问题 0 专栏介绍 本专栏旨在通过对ROS2的系统学习,掌握ROS2底层基本分布式原理,并具有机器人建模和应用ROS2进行实际项目的开发和调试的工程能力。 🚀详情:《ROS2从入门到精通》 1 控制插