构建端到端数据科学项目,从我的Data Scientist Ideal Profiles项目中学习(附链接)...

本文主要是介绍构建端到端数据科学项目,从我的Data Scientist Ideal Profiles项目中学习(附链接)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

翻译:张睿毅;校对:吴金笛

本文约1500字,建议阅读5分钟。

本文为你介绍了构建数据科学项目中重要的思维能力及训练建议。

Joseph Barrientos 拍照于 Unsplash

(链接:https://unsplash.com/photos/Ji_G7Bu1MoM?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText )

人们常说,数据科学家的主要工作不是实际的分析和建模,而是数据的整理和清理部分。因此,涉及这些阶段的全周期数据科学项目将更有价值,因为它们证明了作者独立处理真实数据的能力,而不是使用给定的干净数据集。

完全理解端到端数据科学项目的价值,我一直想建立一个,但直到现在还不能建立。

我最近完成了我的Ideal Profiles项目(链接:https://towardsdatascience.com/what-does-an-ideal-data-scientists-profile-look-like-7d7bd78ff7ab )。因为这是一个涉及许多运动部件的重大项目,所以我想记录过程和经验教训,这是一个进一步的学习机会(受到威廉·科赫森(链接:https://medium.com/@williamkoehrsen )关于数据科学写作价值的伟大文章的启发)。

各阶段

我认为,全周期数据科学项目应包括以下几个阶段:

 

Kaggle项目上工作的最大的争论是它只专注于第二阶段。因此,在这个项目中,我将确保涵盖所有三个阶段。

在第一阶段,我做了网络抓取来获取数据,由于数据是脏的,所以我不得不整理数据进行分析。然后我做了各种数据可视化,并在第二阶段进行了分析。最后,我写了一些文章来发表结果并将这个项目投入生产。

当然,我可以通过包含一个机器学习组件使这个项目更加完整,例如,使用自然语言处理根据内容对工作岗位进行分类,但这将显著延迟项目完成时间,这将使我们进入下一个阶段:

迭代思维

对于一个给定的项目,可能有无限多的事情要处理,但实际上,我们只有的时间。为了协调这两个竞争因素,我们需要有纪律。

对我来说,“迭代思维”确实有帮助 —— 看,罗马不是一天建成的,所以让我们先构造一些有用的东西,然后将其交付,然后我们总是可以回来改进更多的特征。另一方面,这也意味着我们需要能够处理“不完美”,而不是专注于细节。

考虑到这一理念,我能够延迟一些非常诱人的特征,并将它们放在项目文档的待办事项部分(链接:https://github.com/georgeliu1998/ideal_profiles#to-dos )。其中之一是使用更大的来自美国而不是加拿大的网站上的数据集。

模块化

鉴于项目的端到端的特性,我们有很多不同方面的工作:网络抓取,数据预处理,绘图……如果我们把所有的代码在一个Jupyter Notebook,它会过于大且复杂而不能处理。于是我决定使用Python脚本和一个中心Jupyter Notebook解决这个问题。

我将支持函数分为三大类,并将它们封装在三个相应的脚本中:

  • scrape_data.py-包含Web抓取所需的函数,如“get_soup()”“get_urls()”

  • process_text.py-包含文本处理和清除函数,如“tokenize_text()”“check_freq()”

  • helper.py-包含文件输入输出和绘图函数,例如“plot_skill()”

这样,我就可以保持一个超轻且有组织的中心Notebook。然后根据需要从Notebook中导入和调用函数,如下所示:

from scrape_data import *

from process_text import *

from helper import *

复制性

由于我在网上发现的许多抓取脚本都不起作用,我决定确保我的项目是可复制的。除了可靠的代码之外,一个健壮的README文件和一个完整的环境依赖文件也是解决方案的一部分。

  • readme.md-我努力确保捕获所有相关细节,特别是如何设置环境和如何使用脚本。

  • env_Ideal_profiles.yaml-通过将所有依赖项冻结到此文件中,我确保用户可以完全重新创建我使用的同一Anaconda python环境。此处提供更多信息(链接:https://conda.io/docs/user-guide/tasks/manage-environments.html )。

代码最优练习

良好的编码实践很重要!特别是,我发现以下实践在编写更大更复杂的项目时非常有用:

  • 具有有意义的描述性变量/函数名

  • 提供详细和结构化的文档字符串(链接:https://stackoverflow.com/questions/3898572/what-is-the-standard-python-docstring-format)

  • 确保使用python“try except”块处理异常

当你的项目是一个30行的Jupyter Notebook时,这些事情可能看起来微不足道,但是当你处理一个需要数百行代码的主要项目时,这些事情可能真的很关键!

厉害了Matplotlib

我过去只对基本的Matplotlib技巧感到舒服。然而,对于这个项目,我不仅需要将几个图组合成一个,而且还必须进行详细的自定义,例如旋转轴标记标签……在这一点上,基本的Matplotlib技能将不再足够。

 

事实证明这是一个学习Matplotlib的好机会。一旦我知道它能做什么,我发现它不可能回头,仅仅是因为matplotlib真的很强大!它的面向对象方法允许您修改几乎所有内容…请查看以下教程以了解:

  • Matplotlib教程:Python绘图

    (链接:https://www.datacamp.com/community/

    tutorials/matplotlib-tutorial-python )

  • 高效利用Matplotlib

    (链接:http://pbpython.com/effective-

    matplotlib.html )

  • 使用Matplotlib绘制Python(指南)

    (链接:https://realpython.com/blog/python/

    python-matplotlib-guide/ )

谢谢你的阅读!

原文链接:

https://towardsdatascience.com/building-an-end-to-end-data-science-project-28e853c0cae3 

译者简介:张睿毅,北京邮电大学大二物联网在读。我是一个爱自由的人。在邮电大学读第一年书我就四处跑去蹭课,折腾整一年惊觉,与其在当下焦虑,不如在前辈中沉淀。

本文转自:数据派THU ;获授权;

END

合作请加QQ:365242293  

数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。

这篇关于构建端到端数据科学项目,从我的Data Scientist Ideal Profiles项目中学习(附链接)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943286

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

SpringBoot项目启动后自动加载系统配置的多种实现方式

《SpringBoot项目启动后自动加载系统配置的多种实现方式》:本文主要介绍SpringBoot项目启动后自动加载系统配置的多种实现方式,并通过代码示例讲解的非常详细,对大家的学习或工作有一定的... 目录1. 使用 CommandLineRunner实现方式:2. 使用 ApplicationRunne

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.