基于深度学习神经网络的AI图片上色DDcolor系统源码

2024-04-28 09:36

本文主要是介绍基于深度学习神经网络的AI图片上色DDcolor系统源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第一步:DDcolor介绍

        DDColor 是最新的 SOTA 图像上色算法,能够对输入的黑白图像生成自然生动的彩色结果,使用 UNet 结构的骨干网络和图像解码器分别实现图像特征提取和特征图上采样,并利用 Transformer 结构的颜色解码器完成基于视觉语义的颜色查询,最终聚合输出彩色通道预测结果。

        它甚至可以对动漫游戏中的风景进行着色/重新着色,将您的动画风景转变为逼真的现实生活风格!(图片来源:原神)

第二步:DDcolor网络结构

        算法整体流程如下图,使用 UNet 结构的骨干网络和图像解码器分别实现图像特征提取和特征图上采样,并利用 Transformer 结构的颜色解码器完成基于视觉语义的颜色查询,最终聚合输出彩色通道预测结果。

第三步:模型代码展示

import os
import torch
from collections import OrderedDict
from os import path as osp
from tqdm import tqdm
import numpy as npfrom basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.metrics import calculate_metric
from basicsr.utils import get_root_logger, imwrite, tensor2img
from basicsr.utils.img_util import tensor_lab2rgb
from basicsr.utils.dist_util import master_only
from basicsr.utils.registry import MODEL_REGISTRY
from .base_model import BaseModel
from basicsr.metrics.custom_fid import INCEPTION_V3_FID, get_activations, calculate_activation_statistics, calculate_frechet_distance
from basicsr.utils.color_enhance import color_enhacne_blend@MODEL_REGISTRY.register()
class ColorModel(BaseModel):"""Colorization model for single image colorization."""def __init__(self, opt):super(ColorModel, self).__init__(opt)# define network net_gself.net_g = build_network(opt['network_g'])self.net_g = self.model_to_device(self.net_g)self.print_network(self.net_g)# load pretrained model for net_gload_path = self.opt['path'].get('pretrain_network_g', None)if load_path is not None:param_key = self.opt['path'].get('param_key_g', 'params')self.load_network(self.net_g, load_path, self.opt['path'].get('strict_load_g', True), param_key)if self.is_train:self.init_training_settings()def init_training_settings(self):train_opt = self.opt['train']self.ema_decay = train_opt.get('ema_decay', 0)if self.ema_decay > 0:logger = get_root_logger()logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')# define network net_g with Exponential Moving Average (EMA)# net_g_ema is used only for testing on one GPU and saving# There is no need to wrap with DistributedDataParallelself.net_g_ema = build_network(self.opt['network_g']).to(self.device)# load pretrained modelload_path = self.opt['path'].get('pretrain_network_g', None)if load_path is not None:self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')else:self.model_ema(0)  # copy net_g weightself.net_g_ema.eval()# define network net_dself.net_d = build_network(self.opt['network_d'])self.net_d = self.model_to_device(self.net_d)self.print_network(self.net_d)# load pretrained model for net_dload_path = self.opt['path'].get('pretrain_network_d', None)if load_path is not None:param_key = self.opt['path'].get('param_key_d', 'params')self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True), param_key)self.net_g.train()self.net_d.train()# define lossesif train_opt.get('pixel_opt'):self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)else:self.cri_pix = Noneif train_opt.get('perceptual_opt'):self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)else:self.cri_perceptual = Noneif train_opt.get('gan_opt'):self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)else:self.cri_gan = Noneif self.cri_pix is None and self.cri_perceptual is None:raise ValueError('Both pixel and perceptual losses are None.')if train_opt.get('colorfulness_opt'):self.cri_colorfulness = build_loss(train_opt['colorfulness_opt']).to(self.device)else:self.cri_colorfulness = None# set up optimizers and schedulersself.setup_optimizers()self.setup_schedulers()# set real dataset cache for fid metric computingself.real_mu, self.real_sigma = None, Noneif self.opt['val'].get('metrics') is not None and self.opt['val']['metrics'].get('fid') is not None:self._prepare_inception_model_fid()def setup_optimizers(self):train_opt = self.opt['train']# optim_params_g = []# for k, v in self.net_g.named_parameters():#     if v.requires_grad:#         optim_params_g.append(v)#     else:#         logger = get_root_logger()#         logger.warning(f'Params {k} will not be optimized.')optim_params_g = self.net_g.parameters()# optimizer goptim_type = train_opt['optim_g'].pop('type')self.optimizer_g = self.get_optimizer(optim_type, optim_params_g, **train_opt['optim_g'])self.optimizers.append(self.optimizer_g)# optimizer doptim_type = train_opt['optim_d'].pop('type')self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])self.optimizers.append(self.optimizer_d)def feed_data(self, data):self.lq = data['lq'].to(self.device)self.lq_rgb = tensor_lab2rgb(torch.cat([self.lq, torch.zeros_like(self.lq), torch.zeros_like(self.lq)], dim=1))if 'gt' in data:self.gt = data['gt'].to(self.device)self.gt_lab = torch.cat([self.lq, self.gt], dim=1)self.gt_rgb = tensor_lab2rgb(self.gt_lab)if self.opt['train'].get('color_enhance', False):for i in range(self.gt_rgb.shape[0]):self.gt_rgb[i] = color_enhacne_blend(self.gt_rgb[i], factor=self.opt['train'].get('color_enhance_factor'))def optimize_parameters(self, current_iter):# optimize net_gfor p in self.net_d.parameters():p.requires_grad = Falseself.optimizer_g.zero_grad()self.output_ab = self.net_g(self.lq_rgb)self.output_lab = torch.cat([self.lq, self.output_ab], dim=1)self.output_rgb = tensor_lab2rgb(self.output_lab)l_g_total = 0loss_dict = OrderedDict()# pixel lossif self.cri_pix:l_g_pix = self.cri_pix(self.output_ab, self.gt)l_g_total += l_g_pixloss_dict['l_g_pix'] = l_g_pix# perceptual lossif self.cri_perceptual:l_g_percep, l_g_style = self.cri_perceptual(self.output_rgb, self.gt_rgb)if l_g_percep is not None:l_g_total += l_g_perceploss_dict['l_g_percep'] = l_g_percepif l_g_style is not None:l_g_total += l_g_styleloss_dict['l_g_style'] = l_g_style# gan lossif self.cri_gan:fake_g_pred = self.net_d(self.output_rgb)l_g_gan = self.cri_gan(fake_g_pred, target_is_real=True, is_disc=False)l_g_total += l_g_ganloss_dict['l_g_gan'] = l_g_gan# colorfulness lossif self.cri_colorfulness:l_g_color = self.cri_colorfulness(self.output_rgb)l_g_total += l_g_colorloss_dict['l_g_color'] = l_g_colorl_g_total.backward()self.optimizer_g.step()# optimize net_dfor p in self.net_d.parameters():p.requires_grad = Trueself.optimizer_d.zero_grad()real_d_pred = self.net_d(self.gt_rgb)fake_d_pred = self.net_d(self.output_rgb.detach())l_d = self.cri_gan(real_d_pred, target_is_real=True, is_disc=True) + self.cri_gan(fake_d_pred, target_is_real=False, is_disc=True)loss_dict['l_d'] = l_dloss_dict['real_score'] = real_d_pred.detach().mean()loss_dict['fake_score'] = fake_d_pred.detach().mean()l_d.backward()self.optimizer_d.step()self.log_dict = self.reduce_loss_dict(loss_dict)if self.ema_decay > 0:self.model_ema(decay=self.ema_decay)def get_current_visuals(self):out_dict = OrderedDict()out_dict['lq'] = self.lq_rgb.detach().cpu()out_dict['result'] = self.output_rgb.detach().cpu()if self.opt['logger'].get('save_snapshot_verbose', False):  # only for verboseself.output_lab_chroma = torch.cat([torch.ones_like(self.lq) * 50, self.output_ab], dim=1)self.output_rgb_chroma = tensor_lab2rgb(self.output_lab_chroma)out_dict['result_chroma'] = self.output_rgb_chroma.detach().cpu()if hasattr(self, 'gt'):out_dict['gt'] = self.gt_rgb.detach().cpu()if self.opt['logger'].get('save_snapshot_verbose', False):  # only for verboseself.gt_lab_chroma = torch.cat([torch.ones_like(self.lq) * 50, self.gt], dim=1)self.gt_rgb_chroma = tensor_lab2rgb(self.gt_lab_chroma)out_dict['gt_chroma'] = self.gt_rgb_chroma.detach().cpu()return out_dictdef test(self):if hasattr(self, 'net_g_ema'):self.net_g_ema.eval()with torch.no_grad():self.output_ab = self.net_g_ema(self.lq_rgb)self.output_lab = torch.cat([self.lq, self.output_ab], dim=1)self.output_rgb = tensor_lab2rgb(self.output_lab)else:self.net_g.eval()with torch.no_grad():self.output_ab = self.net_g(self.lq_rgb)self.output_lab = torch.cat([self.lq, self.output_ab], dim=1)self.output_rgb = tensor_lab2rgb(self.output_lab)self.net_g.train()def dist_validation(self, dataloader, current_iter, tb_logger, save_img):if self.opt['rank'] == 0:self.nondist_validation(dataloader, current_iter, tb_logger, save_img)def nondist_validation(self, dataloader, current_iter, tb_logger, save_img):dataset_name = dataloader.dataset.opt['name']with_metrics = self.opt['val'].get('metrics') is not Noneuse_pbar = self.opt['val'].get('pbar', False)if with_metrics and not hasattr(self, 'metric_results'):  # only execute in the first runself.metric_results = {metric: 0 for metric in self.opt['val']['metrics'].keys()}# initialize the best metric results for each dataset_name (supporting multiple validation datasets)if with_metrics:self._initialize_best_metric_results(dataset_name)# zero self.metric_resultsif with_metrics:self.metric_results = {metric: 0 for metric in self.metric_results}metric_data = dict()if use_pbar:pbar = tqdm(total=len(dataloader), unit='image')if self.opt['val']['metrics'].get('fid') is not None:fake_acts_set, acts_set = [], []for idx, val_data in enumerate(dataloader):# if idx == 100:#     breakimg_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]if hasattr(self, 'gt'):del self.gtself.feed_data(val_data)self.test()visuals = self.get_current_visuals()sr_img = tensor2img([visuals['result']])metric_data['img'] = sr_imgif 'gt' in visuals:gt_img = tensor2img([visuals['gt']])metric_data['img2'] = gt_imgtorch.cuda.empty_cache()if save_img:if self.opt['is_train']:save_dir = osp.join(self.opt['path']['visualization'], img_name)for key in visuals:save_path = os.path.join(save_dir, '{}_{}.png'.format(current_iter, key))img = tensor2img(visuals[key])imwrite(img, save_path)else:if self.opt['val']['suffix']:save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,f'{img_name}_{self.opt["val"]["suffix"]}.png')else:save_img_path = osp.join(self.opt['path']['visualization'], dataset_name,f'{img_name}_{self.opt["name"]}.png')imwrite(sr_img, save_img_path)if with_metrics:# calculate metricsfor name, opt_ in self.opt['val']['metrics'].items():if name == 'fid':pred, gt = visuals['result'].cuda(), visuals['gt'].cuda()fake_act = get_activations(pred, self.inception_model_fid, 1)fake_acts_set.append(fake_act)if self.real_mu is None:real_act = get_activations(gt, self.inception_model_fid, 1)acts_set.append(real_act)else:self.metric_results[name] += calculate_metric(metric_data, opt_)if use_pbar:pbar.update(1)pbar.set_description(f'Test {img_name}')if use_pbar:pbar.close()if with_metrics:if self.opt['val']['metrics'].get('fid') is not None:if self.real_mu is None:acts_set = np.concatenate(acts_set, 0)self.real_mu, self.real_sigma = calculate_activation_statistics(acts_set)fake_acts_set = np.concatenate(fake_acts_set, 0)fake_mu, fake_sigma = calculate_activation_statistics(fake_acts_set)fid_score = calculate_frechet_distance(self.real_mu, self.real_sigma, fake_mu, fake_sigma)self.metric_results['fid'] = fid_scorefor metric in self.metric_results.keys():if metric != 'fid':self.metric_results[metric] /= (idx + 1)# update the best metric resultself._update_best_metric_result(dataset_name, metric, self.metric_results[metric], current_iter)self._log_validation_metric_values(current_iter, dataset_name, tb_logger)def _log_validation_metric_values(self, current_iter, dataset_name, tb_logger):log_str = f'Validation {dataset_name}\n'for metric, value in self.metric_results.items():log_str += f'\t # {metric}: {value:.4f}'if hasattr(self, 'best_metric_results'):log_str += (f'\tBest: {self.best_metric_results[dataset_name][metric]["val"]:.4f} @ 'f'{self.best_metric_results[dataset_name][metric]["iter"]} iter')log_str += '\n'logger = get_root_logger()logger.info(log_str)if tb_logger:for metric, value in self.metric_results.items():tb_logger.add_scalar(f'metrics/{dataset_name}/{metric}', value, current_iter)def _prepare_inception_model_fid(self, path='pretrain/inception_v3_google-1a9a5a14.pth'):incep_state_dict = torch.load(path, map_location='cpu')block_idx = INCEPTION_V3_FID.BLOCK_INDEX_BY_DIM[2048]self.inception_model_fid = INCEPTION_V3_FID(incep_state_dict, [block_idx])self.inception_model_fid.cuda()self.inception_model_fid.eval()@master_onlydef save_training_images(self, current_iter):visuals = self.get_current_visuals()save_dir = osp.join(self.opt['root_path'], 'experiments', self.opt['name'], 'training_images_snapshot')os.makedirs(save_dir, exist_ok=True)for key in visuals:save_path = os.path.join(save_dir, '{}_{}.png'.format(current_iter, key))img = tensor2img(visuals[key])imwrite(img, save_path)def save(self, epoch, current_iter):if hasattr(self, 'net_g_ema'):self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])else:self.save_network(self.net_g, 'net_g', current_iter)self.save_network(self.net_d, 'net_d', current_iter)self.save_training_state(epoch, current_iter)

第四步:运行

第五步:整个工程的内容

代码的下载路径(新窗口打开链接)基于深度学习神经网络的AI图片上色DDcolor系统源码

有问题可以私信或者留言,有问必答

这篇关于基于深度学习神经网络的AI图片上色DDcolor系统源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/942902

相关文章

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动