可以在手机端运行的大模型标杆:微软发布第三代Phi-3系列模型,评测结果超过同等参数规模水平,包含三个版本,最小38亿,最高140亿参数

本文主要是介绍可以在手机端运行的大模型标杆:微软发布第三代Phi-3系列模型,评测结果超过同等参数规模水平,包含三个版本,最小38亿,最高140亿参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文原文来自DataLearnerAI官方网站:

可以在手机端运行的大模型标杆:微软发布第三代Phi-3系列模型,评测结果超过同等参数规模水平,包含三个版本,最小38亿,最高140亿参数 | 数据学习者官方网站(Datalearner)icon-default.png?t=N7T8https://www.datalearner.com/blog/1051713851616894


Phi系列大语言模型是微软开源一个小规模参数的语言模型。第一代和第二代的Phi模型参数规模都不超过30亿,但是在多个评测结果上都取得了非常亮眼的成绩。今天,微软发布了第三代Phi系列大模型,最高参数规模也到了140亿,其中最小的模型参数38亿,评测结果接近GPT-3.5的水平。

微软发布phi-3模型

  • Phi系列模型简介
  • 第三代Phi-3模型简介
  • Phi-3系列模型评测结果接近GPT-3.5
  • Phi-3系列的开源情况
Phi系列模型简介

大语言模型的一个重要应用方向就是在手机端运行。为此,30亿参数规模几乎是上限(超过这个规模的模型,需要通过量化等手段牺牲模型性能)。在这其中,微软的Phi系列模型是最具有竞争力的。

Phi系列模型的目的是希望在小规模参数的模型上获得传统大模型的能力。微软发布了第三代Phi模型,这一代的模型最小参数38亿,最大规模拓展到了140亿,包含3个版本,分别是Phi-mini-3.8B、Phi-small-7B和Phi-medium-14B。参数规模增长的同时,能力也大幅提高。

第三代Phi-3模型简介

第三代的Phi模型是微软继续探索小规模参数语言模型的成果。尽管Phi-3包含了70亿和140亿两个较大规模版本的模型。但是最小的38亿参数模型依然可以在手机端运行。

Phi-3-mini-3.8B模型采用了transformer的decoder架构,默认上下文长度是4K,采用了和Llama-2类似的block结构,使用同样的tokenizer,词汇表大小为32064。因此,任何为Llama2开发的工具套件几乎可以直接应用在phi-3-mini上,这个模型训练数据量达到了3.3万亿tokens。

Phi-3-small-7B是新增的一个更大规模参数版本的Phi模型,参数70亿,但是tokenizer换成了tiktoken,使之有更好的多语言能力,词汇表大小也拓展到了100352,默认上下文长度是8K,模型也有分组查询注意力机制(Group Query Attention,GQA),从这个变化看,和Llama3的架构非常接近(Llama3的详细分析参考:开源王者!全球最强的开源大模型Llama3发布!15万亿数据集训练,最高4000亿参数,数学评测超过GPT-4,全球第二! | 数据学习者官方网站(Datalearner) )。模型的数据训练量达到了4.8万亿tokens。

Phi-3还有一个140亿参数规模的Phi-3-medium-14B版本,架构与最小的Phi-3-mini-3.8B相同,但是训练的epoch更多,训练的数据量和Phi-3-small一样,4.9万亿tokens。但是这个模型比Phi-3-small-7B的提升不如Phi-3-small-7B相比Phi-3-mini-3.8B提升多。作者认为可能是数据问题,所以后面他们还会改进,因此,把这个Phi-3-medium-14B称为preview版本。

Phi-3模型系列更多的详情参考DataLearnerAI模型信息卡地址:

模型版本Phi3模型信息卡地址
Phi3-miniPhi-3-mini 3.8B(Phi-3-mini 3.8B)详细信息 | 名称、简介、使用方法,开源情况,商用授权信息 | 数据学习(DataLearner)
Phi3-smallPhi-3-small 7B(Phi-3-small 7B)详细信息 | 名称、简介、使用方法,开源情况,商用授权信息 | 数据学习(DataLearner)
Phi3-medium-previewPhi-3-medium 14B-preview(Phi-3-medium 14B-preview)详细信息 | 名称、简介、使用方法,开源情况,商用授权信息 | 数据学习(DataLearner)
Phi-3系列模型评测结果接近GPT-3.5

Phi系列模型的评测结果一直非常优秀,尽管在复杂任务上与大规模参数版本的大模型有差距,但是作为一个几十亿参数模型来说,已经表现很不错了。

本次第三代Phi模型的提升也比较大。首先,我们看一下在30亿参数规模左右模型的对比结果:

Phi-3-mini评测结果

数据来源:30亿参数规模大模型综合评测对比 | 当前主流大模型在各评测数据集上的表现总榜单 | 数据学习 (DataLearner)

上图是DataLearnerAI收集的30亿参数以下大模型评测对比结果。可以看到,Phi-3-mini-3.8B得分远超其它同等参数规模的模型,效果非常好。而且不仅仅是MMLU的综合评测理解上,在数学推理GSM8K以及MT-Bench上表现也非常好。其70亿参数规模版本的模型在MMLU测评上甚至超过了Anthropic旗下的Claude3-Haiku模型!

如果不限制参数规模,与所有其它模型相比,Phi-3-medium超过了此前Mixtral-8×22B-MoE模型,表现非常亮眼:

Phi-3-medium和Phi-3-small评测结果

数据来源L:大模型综合评测对比 | 当前主流大模型在各评测数据集上的表现总榜单 | 数据学习 (DataLearner)

在编程评测HumanEval上,这三个模型相差不大,甚至最大的140亿参数规模的Phi-3-medium-14B水平表现略有下降,十分奇怪:

Phi-3模型的编程能力测评

数据来源:大模型代码能力评测对比 | 当前主流大模型在代码能力上的表现总榜单 | 数据学习 (DataLearner)

从这些评测结果看,Phi-3模型的变现十分优秀。不过,有争议的是Phi系列模型一直因为评测结果很高但是参数量很少受到质疑。其实,从现在的情况看,因为大多数评测的数据过于陈旧,导致模型评测结果的区分度已经降低。而且很多模型都会在有监督微调(SFT)阶段针对性的做微调,会导致评测分数虚高。不过,从侧面看,在30亿参数规模的模型中,Phi系列一直是标杆,还是值得关注的。

Phi-3系列的开源情况

目前,Phi-3系列模型只发布了论文信息,还没有预训练结果发布。大家关注DataLearnerAI的模型信息卡可以获取后续的情况。根据Phi-2模型发布的情况看,最早Phi2模型是不可以商用的,但是过了一段时间,开源协议改成MIT开源协议,没有任何商用限制。Phi-3可以期待也是类似的开源协议。

这篇关于可以在手机端运行的大模型标杆:微软发布第三代Phi-3系列模型,评测结果超过同等参数规模水平,包含三个版本,最小38亿,最高140亿参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/942128

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n