西湖大学赵世钰老师【强化学习的数学原理】学习笔记-1、0节

2024-04-28 01:20

本文主要是介绍西湖大学赵世钰老师【强化学习的数学原理】学习笔记-1、0节,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习的数学原理是由西湖大学赵世钰老师带来的关于RL理论方面的详细课程,本课程深入浅出地介绍了RL的基础原理,前置技能只需要基础的编程能力、概率论以及一部分的高等数学,你听完之后会在大脑里面清晰的勾勒出RL公式推导链条中的每一个部分。赵老师明确知道RL创新研究的理论门槛在哪,也知道视频前的你我距离这个门槛还有多远。

本笔记将会用于记录我学习中的理解,会结合赵老师的视频截图,以及PDF文档Book-Mathematical-Foundation-of-Reinforcement-Learning进行笔记注释,之后也会补充课程相关的代码样例,帮助大家理解

笔记合集链接(排版更好哦🧐):《RL的数学原理》

记得点赞哟(๑ゝω╹๑)

前面章节贵在基础性,后面章节在于前沿性与实践性

  • Chapter1:基本概念
  • Chapter2:贝尔曼公式,重要的概念及工具,用以策略评价
  • Chapter3:贝尔曼最优公式->最优策略,强化学习的最终目标就是求解最优策略, 需要把握两点:最优策略与最优状态价值。贝尔曼最优方程:1.不动点原理,2. 解决基础性问题,3. 提供求解贝尔曼方程的算法
  • Chapter4: 你的第一类求解最优策略的算法:值迭代,策略迭代,Truncated policy(第三个是前两者的结合,亦或者说是前两者的一种积分情况)。以上三个算法都是迭代式的算法,都包含策略迭代与值迭代,在实践中不断迭代,从而获得最优策略。未来所有的算法都是以此为基本逻辑。另外,以上都需要环境模型。
  • Chapter5:蒙特卡洛是最简单,也是唯一不需要模型的算法,需要明确没有模型的情况下,我们的训练目标是什么,以及我们所拥有的是什么:期望值(某种程度上可以理解为平均值),采样数据。模型与数据必有其一才可学习。你的第一类求解无模型的RL的算法:1. MC Basic(策略迭代数据版,效率特别低), 2. MC Exploring Starts, 3.MC ϵ-greedy
  • Chapter6:随机近似理论,估计随机变量的期望, 两种估计的方法:1.无增量的想法,需要对所有采样的结果都获取到之后求平均,获得近似,2. 有增量的想法,先对其有一个不准确的估计,每次获得采样后,不断更新估计。三种算法:1. Robbins-Monro(RM)算法,2. Stochastic gradient descent(SGD)随机梯度下降,3. SGD,BGD批量下降,MBGD小批量梯度下降三者之间的比较。
  • Chapter7:时序差分方法,1. 用TD方法计算state value(前面使用了蒙特卡洛、模型等方法计算),2. Sarsa:用TD思想学习动作价值,3. Q-learing:用TD直接计算最优动作价值,因此是off-policy离线策略。Behaviour Policy 与 Target Policy 如果二者相同,那就是On-policy,反之就是Off-policy(可以从先前别的策略学习到的数据为我所用)
  • Chapter8:从之前的邻接矩阵形式,迈入了函数表达式,使用近似函数模拟的方式求解状态价值:明确目标函数,求梯度,使用梯度上升或梯度下降进行优化。模型应用中,值函数的更新是通过真实值和函数值之差的绝对值来评判。与时序差分算法的多种结合。利用了神经网络所具有的优秀函数拟合能力,发展产生了深度强化学习。
  • Chapter9:从Value-based迈入了policy-based,他们的区别在于后者是直接使用函数拟合,并且直接改变优化策略:明确目标函数,求梯度,使用梯度上升或梯度下降进行优化。
  • Chapter10:结合Value-based(Critic)和policy-based(Actor)

课程是否适合你?

本课程是原理部分,偏向于用数学原理来描述问题,能够更全面更完整理解,只有深刻理解原理,才能有所创新

0节:课程介绍

1、Why this course?

  • Reinforcement learning:An introduction.强化学习界的圣经(广泛引用,但是数学内容不多,对深入学习不算友好,同时会有高级知识提前出现在基础内容中,导致学习不太友好)
  • 一大类书籍都偏向于通过文字描述,通过直观解释来介绍,另一大类又太过数学化,需要极强的专业背景,中间存在一个Gap等待被填充
  • 我们希望从本质去回答去回答算法设计的逻辑,将数学控制在合理的水平,既能清晰展现原理,又不会过于晦涩
  • 建议大家循序渐进,按照章节进行学习

2、The story of Alphago

3、Brief history of rl

DQN:RL与deep RL的分界线

Q-learning:一种时序差分算法

4、Details of this course

强化学习与监督学习、半监督学习并列属于ML,其有着广泛地交叉应用领域,并在控制方向上也有着重大作用

这篇关于西湖大学赵世钰老师【强化学习的数学原理】学习笔记-1、0节的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/942001

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个