泰坦尼克号乘客生存情况预测分析2

2024-04-27 13:44

本文主要是介绍泰坦尼克号乘客生存情况预测分析2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


泰坦尼克号乘客生存情况预测分析1
泰坦尼克号乘客生存情况预测分析2
泰坦尼克号乘客生存情况预测分析3
泰坦尼克号乘客生存情况预测分析总


在这里插入图片描述

背景描述

Titanic数据集在数据分析领域是十分经典的数据集,非常适合刚入门的小伙伴进行学习!

泰坦尼克号轮船的沉没是历史上最为人熟知的海难事件之一。1912年4月15日,在她的处女航中,泰坦尼克号在与冰山相撞后沉没,在船上的 2224 名乘客和机组人员中,共造成 1502 人死亡。这场耸人听闻的悲剧震惊了国际社会,从而促进了船舶安全规定的完善。造成海难失事的原因之一是乘客和机组人员没有足够的救生艇。尽管在沉船事件中幸存者有一些运气因素,但有些人比其他人更容易存活下来,究竟有哪些因素影响着最终乘客的生存与否呢?

数据说明

在该数据集中,共包括三个文件,分别代表训练集测试集以及测试集的答案

数据描述:

变量名称PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
变量解释乘客编号是否存活船舱等级姓名性别年龄兄弟姐妹和配偶数量父母与子女数量票的编号票价座位号登船码头
数据类型numericcategoricalcategoricalStringcategoricalcategoricalnumericnumericstringnumericstringcategorical

:以上数据类型均为经过预处理后的数据类型!

数据来源

Titanic Competition : How top LB got their score


目录

    • 背景描述
    • 数据说明
    • 数据来源
  • 二 特征工程
    • 1. 合并训练集与测试集
    • 2. 缺失值处理
      • 2.1 填充Embarked字段
      • 2.2 填充船票Fare字段
      • 2.3 填充年龄Age字段
    • 3 不同特征字段的数据处理
      • 3.1 先对Embarked、Sex以及Pclass等用dummy处理
      • 3.2 票价分级处理
      • 3.3 名字处理
      • 3.4 Cabin处理
      • 3.5 Ticket处理
    • 4. 利用随机森林预测Age缺失值
    • 5. 各特征与Survived的相关系数排序
    • 6. 保存特征处理后的数据
    • 7. 小结

二 特征工程

1. 合并训练集与测试集

在进行特征工程的时候,我们不仅需要对训练数据进行处理,还需要同时将测试数据同训练数据一起处理,使得二者具有相同的数据类型和数据分布。

import pandas as pdtrain = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
train_and_test = train.append(test, sort=False) # 合并训练集与测试集
PassengerId = test['PassengerId']
train_and_test.shape

在这里插入图片描述

2. 缺失值处理

对Embarked直接用众数填充;
对Fare用均值填充;
对Age,建立模型预测;

2.1 填充Embarked字段

mode = train_and_test['Embarked'].mode().iloc[0] # 找到众数
train_and_test['Embarked'].fillna(mode, inplace=True)
train_and_test.info()

在这里插入图片描述

2.2 填充船票Fare字段

train_and_test['Fare'].mean()

在这里插入图片描述

Fare_mean = train_and_test['Fare'].mean()
train_and_test['Fare'].fillna(Fare_mean, inplace=True)
train_and_test.info()

在这里插入图片描述

2.3 填充年龄Age字段

为尽可能用多的特征去预测Age的值,先对Cabin、Embarked、Name、Sex、Ticket、Pclass等特征进行处理,模型预测见后;

3 不同特征字段的数据处理

3.1 先对Embarked、Sex以及Pclass等用dummy处理

对分类特征进行编码

cols = ['Embarked', 'Sex', 'Pclass']
train_and_test = pd.get_dummies(train_and_test, columns=cols, prefix_sep='__')
train_and_test.info()

在这里插入图片描述

3.2 票价分级处理

我们可以尝试将Fare分桶处理,使用qcut函数。qcut是根据这些值的频率来选择箱子的均匀间隔,每个箱子中含有的数的数量是相同的;

# 临时列
train_and_test['Fare_bin'] = pd.qcut(train_and_test['Fare'], 5)#编码
train_and_test['Fare_bin_id'] = pd.factorize(train_and_test['Fare_bin'])[0]
fare_bin_dummies_df = pd.get_dummies(train_and_test['Fare_bin_id']).rename(columns=lambda x : 'Fare_' + str(x))
train_and_test = pd.concat([train_and_test, fare_bin_dummies_df], axis=1)
train_and_test.drop(['Fare_bin'], axis=1, inplace=True)

3.3 名字处理

对名字Name进行处理,提取其特征;

提取称呼

train_and_test['Title'] = train_and_test['Name'].apply(lambda x : x.split(',')[1].split('.')[0].strip())
train_and_test['Title']

在这里插入图片描述

# 将各式称呼进行统一化处理
# 头衔映射表
titleDict = {"Capt" :      "Officer", "Col"  :      "Officer","Major":      "Officer","Jonkheer":   "Royalty","Don":        "Royalty","Sir" :       "Royalty","Dr":         "Officer","Rev":        "Officer","the Countess":"Royalty","Dona":       "Royalty","Mme":        "Mrs","Mlle":       "Miss","Ms":         "Mrs","Mr" :        "Mr","Mrs" :       "Mrs","Miss" :      "Miss","Master" :    "Master","Lady" :      "Royalty"
}
train_and_test['Title'] = train_and_test['Title'].map(titleDict)
train_and_test['Title'].value_counts()

在这里插入图片描述

one_hot编码

train_and_test['Title'] = pd.factorize(train_and_test['Title'])[0]
title_dummies_df = pd.get_dummies(train_and_test['Title'], prefix=train_and_test[['Title']].columns[0])
train_and_test = pd.concat([train_and_test, title_dummies_df], axis=1)
train_and_test.info()

在这里插入图片描述

提取长度特征

train_and_test['Name_length'] = train_and_test['Name'].apply(len)
train_and_test['Name_length']

在这里插入图片描述

3.4 Cabin处理

Cabin缺失值过多,将其分为有无两类,进行编码,如果缺失,即为0,否则为1;

train_and_test.loc[train_and_test.Cabin.isnull(), 'Cabin'] = 'U0'
train_and_test['Cabin'] = train_and_test['Cabin'].apply(lambda x : 0 if x == 'U0' else 1)
train_and_test['Cabin']

在这里插入图片描述

3.5 Ticket处理

Ticket有字母和数字之分,对于不同的字母,可能在很大程度上就意味着船舱等级或者不同船舱的位置,也会对Survived产生一定的影响,所以我们将Ticket中的字母分开,为数字的部分则分为一类。

train_and_test['Ticket_Letter'] = train_and_test['Ticket'].str.split().str[0]
train_and_test['Ticket_Letter'] = train_and_test['Ticket_Letter'].apply(lambda x : 'U0' if x.isnumeric() else x)# 将Ticket_Letter factorize
train_and_test['Ticket_Letter'] = pd.factorize(train_and_test['Ticket_Letter'])[0]
train_and_test['Ticket_Letter']

在这里插入图片描述

4. 利用随机森林预测Age缺失值

from sklearn.ensemble import RandomForestRegressor  # 随机森林回归missing_age = train_and_test.drop(['PassengerId', 'Survived', 'Name', 'Ticket'], axis=1) # 去除字符串类型的字段
missing_age_train = missing_age[missing_age['Age'].notnull()]
missing_age_test = missing_age[missing_age['Age'].isnull()]X_train = missing_age_train.iloc[:,1:]
y_train = missing_age_train.iloc[:,0]
X_test = missing_age_test.iloc[:,1:]rfr = RandomForestRegressor(n_estimators=1000, n_jobs=-1)
rfr.fit(X_train, y_train)
y_predict = rfr.predict(X_test)
train_and_test.loc[train_and_test['Age'].isnull(), 'Age'] = y_predict
train_and_test.info()

在这里插入图片描述

5. 各特征与Survived的相关系数排序

根据生存情况与其他各特征的相关系数,按系数倒序排序,筛选出重要特征 – 重要特征

train_and_test.corr()['Survived'].abs().sort_values(ascending=False)

在这里插入图片描述

6. 保存特征处理后的数据

train_and_test.to_csv('经过特征工程处理后的数据.csv', index=None)

7. 小结

特征工程这一章主要做了以下工作:

  • 合并训练集和测试集
    • 为了使二者具有相同的数据类型和数据分布;
  • 缺失值处理:
    • Embarked:众数填充;
    • Fare:平均值填充;
    • Age:随机森林预测填充;
  • 各特征字段的数据处理:
    • Embarked,Sex,Pclass: 直接dummy编码;
    • Fare: 先分桶处理,再dummy编码;
    • Name: 先提取称呼,再对称呼进行人群分类,最后dummy处理;
    • cabin:缺失值较多,根据是否缺失划分类别,缺失为0,否则为1;
    • Ticket:只保留其中字母,并对字母进行数字转换;
  • 随机森林建模预测Age缺失值;
  • 对各特征与生存与否进行了相关系数大小排序;

本章主要关于到泰坦尼克号数据的特征工程处理,后续就是建模预测部分了,建模预测打算分两部分,一部分只是简单涉及一些算法,参数全部默认;另一部分,会加些算法调参、优化以及复杂模型等,这几天就会安排上!

如果本文有存在不足的地方,欢迎大家在评论区留言

这篇关于泰坦尼克号乘客生存情况预测分析2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940664

相关文章

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud