【斐波那契】原来困扰多年的生兔子问题竟然能够轻松拿捏...万能公式法...

本文主要是介绍【斐波那契】原来困扰多年的生兔子问题竟然能够轻松拿捏...万能公式法...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上篇文章我们讲解了「矩阵快速幂」技巧,通过快速幂极大的优化了 斐波那契数列 的求解问题。并且通过分析知道了 系数矩阵 是解决问题的关键。

本文我们继续深化对于 系数矩阵 的求解,介绍一种通用方法,一举解决所有 斐波那契及变种类型 的问题。

提示: 先看 上篇文章 效果更佳哦~

生兔子问题

有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不会死,问第 N 月有多少对兔子?

这道题不是典型的斐波那契数列么,递推公式为:

这和上道题目一模一样,根本不需要讲解。但是,我们对于本题进行一定的改编,增加点儿难度


假设,现有一对成熟的兔子,新出生的兔子从出生的 第 4 个月 开始每月生一对兔子,问第 N 月有多少对兔子呢?

注意:

  1. 第一月已经有成熟的兔子了,所以从第二月开始就有新的兔子诞生了。
  2. 新出生的兔子三个月后才会生新的兔子。

通过分析不难发现:

因此,递推表达式为:

(如果这样不容易想出来,也可以自己动手列举列举,多写几项就能观察出规律啦)

关系推导

按照 上篇文章 的思路,我们做如下推导:

温馨提示:先看上篇文章更好理解哦~

三个相邻项 写成矩阵形式,由此可以得到关系式:

因此系数矩阵就得到了,后续的求解和上篇文章的简直一模一样了~

-----------------------桥豆麻袋---------------------

有小伙伴说了,这个系数矩阵不太会搞出来啊,那怎么办呢?有什么无脑办法么…哎,还真有!

这就要拿出我们初中就学过的万能的 待定系数法 了。

不就是一个系数矩阵嘛,我直接全设成未知数,一个一个解出来不就行了~

九个未知数,需要九个式子:

虽然看着麻烦,其实解起来也还行吧~哈哈哈,这样我们依然能够得到系数矩阵。

有了系数矩阵之后,就可以将第 n 项化简成只与前 3 项有关的式子。

即系数矩阵的 n-3 次方的第一行与 F3, F2, F1 的内积和。

代码

public static int f(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2 || n == 3) {return n;}int[][] base = { { 1, 0, 1 }, { 1, 0, 0 }, { 0, 1, 0 } };int[][] res = matrixPower(base, n - 3);return 3 * res[0][0] + 2 * res[0][1] + res[0][2];
}private static int[][] matrixPower(int[][] m, int p) {int[][] res = new int[m.length][m[0].length];for (int i = 0; i < res.length; i++) {res[i][i] = 1;}int[][] t = m;for (; p != 0; p >>= 1) {if ((p & 1) != 0) {res = produce(res, t);}t = produce(t, t);}return res;
}private static int[][] produce(int[][] a, int[][] b) {int n = a.length;int m = b[0].length;int k = a[0].length;int[][] ans = new int[n][m];for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {for (int c = 0; c < k; c++) {ans[i][j] += a[i][c] * b[c][j];}}}return ans;
}

只需在上篇文章代码中,将 f() 函数中初始边界条件、系数矩阵 以及 次方数和返回结果进行修改即可,另外两个函数无需做任何改变(具体细节可以参考 上篇文章 哦~)。

总结

通过本文的探讨,再次验证了 求解系数矩阵 就是解决此类斐波那契递推的关键。我们可以将结论进行适当推广:

当递推式是关于 F(n) 直到 F(n-i) 的,那么就可以将 i 项组合成一个矩阵,进行求解,此时需要构造一个 i*i 的系数矩阵,最终答案与 n-i 次方i 项已知项的内积 有关。


学习到这里,我们就得到了 斐波那契类型题万能解法 了,稍微有点难度哦 ~~~ 点赞、转发让你的小伙伴们一起来学吧!!!

~ 点赞 ~ 关注 ~ 星标 ~ 不迷路 ~!!!

关注回复「ACM紫书」获取 ACM 算法书籍~

这篇关于【斐波那契】原来困扰多年的生兔子问题竟然能够轻松拿捏...万能公式法...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/938652

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入