【斐波那契】原来困扰多年的生兔子问题竟然能够轻松拿捏...万能公式法...

本文主要是介绍【斐波那契】原来困扰多年的生兔子问题竟然能够轻松拿捏...万能公式法...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上篇文章我们讲解了「矩阵快速幂」技巧,通过快速幂极大的优化了 斐波那契数列 的求解问题。并且通过分析知道了 系数矩阵 是解决问题的关键。

本文我们继续深化对于 系数矩阵 的求解,介绍一种通用方法,一举解决所有 斐波那契及变种类型 的问题。

提示: 先看 上篇文章 效果更佳哦~

生兔子问题

有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不会死,问第 N 月有多少对兔子?

这道题不是典型的斐波那契数列么,递推公式为:

这和上道题目一模一样,根本不需要讲解。但是,我们对于本题进行一定的改编,增加点儿难度


假设,现有一对成熟的兔子,新出生的兔子从出生的 第 4 个月 开始每月生一对兔子,问第 N 月有多少对兔子呢?

注意:

  1. 第一月已经有成熟的兔子了,所以从第二月开始就有新的兔子诞生了。
  2. 新出生的兔子三个月后才会生新的兔子。

通过分析不难发现:

因此,递推表达式为:

(如果这样不容易想出来,也可以自己动手列举列举,多写几项就能观察出规律啦)

关系推导

按照 上篇文章 的思路,我们做如下推导:

温馨提示:先看上篇文章更好理解哦~

三个相邻项 写成矩阵形式,由此可以得到关系式:

因此系数矩阵就得到了,后续的求解和上篇文章的简直一模一样了~

-----------------------桥豆麻袋---------------------

有小伙伴说了,这个系数矩阵不太会搞出来啊,那怎么办呢?有什么无脑办法么…哎,还真有!

这就要拿出我们初中就学过的万能的 待定系数法 了。

不就是一个系数矩阵嘛,我直接全设成未知数,一个一个解出来不就行了~

九个未知数,需要九个式子:

虽然看着麻烦,其实解起来也还行吧~哈哈哈,这样我们依然能够得到系数矩阵。

有了系数矩阵之后,就可以将第 n 项化简成只与前 3 项有关的式子。

即系数矩阵的 n-3 次方的第一行与 F3, F2, F1 的内积和。

代码

public static int f(int n) {if (n < 1) {return 0;}if (n == 1 || n == 2 || n == 3) {return n;}int[][] base = { { 1, 0, 1 }, { 1, 0, 0 }, { 0, 1, 0 } };int[][] res = matrixPower(base, n - 3);return 3 * res[0][0] + 2 * res[0][1] + res[0][2];
}private static int[][] matrixPower(int[][] m, int p) {int[][] res = new int[m.length][m[0].length];for (int i = 0; i < res.length; i++) {res[i][i] = 1;}int[][] t = m;for (; p != 0; p >>= 1) {if ((p & 1) != 0) {res = produce(res, t);}t = produce(t, t);}return res;
}private static int[][] produce(int[][] a, int[][] b) {int n = a.length;int m = b[0].length;int k = a[0].length;int[][] ans = new int[n][m];for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {for (int c = 0; c < k; c++) {ans[i][j] += a[i][c] * b[c][j];}}}return ans;
}

只需在上篇文章代码中,将 f() 函数中初始边界条件、系数矩阵 以及 次方数和返回结果进行修改即可,另外两个函数无需做任何改变(具体细节可以参考 上篇文章 哦~)。

总结

通过本文的探讨,再次验证了 求解系数矩阵 就是解决此类斐波那契递推的关键。我们可以将结论进行适当推广:

当递推式是关于 F(n) 直到 F(n-i) 的,那么就可以将 i 项组合成一个矩阵,进行求解,此时需要构造一个 i*i 的系数矩阵,最终答案与 n-i 次方i 项已知项的内积 有关。


学习到这里,我们就得到了 斐波那契类型题万能解法 了,稍微有点难度哦 ~~~ 点赞、转发让你的小伙伴们一起来学吧!!!

~ 点赞 ~ 关注 ~ 星标 ~ 不迷路 ~!!!

关注回复「ACM紫书」获取 ACM 算法书籍~

这篇关于【斐波那契】原来困扰多年的生兔子问题竟然能够轻松拿捏...万能公式法...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/938652

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例