偏微分方程算法之五点菱形差分法

2024-04-26 18:12

本文主要是介绍偏微分方程算法之五点菱形差分法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、研究目标

二、理论推导

三、算例实现

四、结论


一、研究目标

        上个专栏我们介绍了双曲型偏微分方程的主要算法及实现。从今天开始,我们在新的专栏介绍另一种形式偏微分方程-椭圆型的解法。

        研究目标选取经典的二维椭圆型方程(也称泊松Poisson方程):

-\Delta u=-(\frac{\partial^{2}u(x,y)}{\partial x^{2}}+\frac{\partial^{2}u(x,y)}{\partial y^{2}})=f(x,y)

        当f=0时,就是著名的拉普拉斯(Laplace)方程。椭圆型方程在流体力学、弹性力学、电磁学、几何学和变分法中都广泛应用。现假设所要讨论的为矩形区域\Omega=[(x,y)|a\leqslant x\leqslant b,c\leqslant y\leqslant d],考虑以下Poisson方程的边值问题:

\left\{\begin{matrix} -(\frac{\partial^{2}u(x,y)}{\partial x^{2}}+\frac{\partial^{2}u(x,y)}{\partial y^{2}})=f(x,y),(x,y)\in\Omega,\space\space(2)\\ u(x,y)=\varphi(x,y),(x,y)\in\partial \Omega=\Gamma \end{matrix}\right.

        固定边界的无厚薄膜,受外力作用后达到平衡状态时的位移函数u满足上述方程。一般情况下,公式(2)是很难直接用解析的方式计算精确解的,所以需要利用数值方法求解。

二、理论推导

        首先介绍五点菱形差分格式,推导过程如下:

        第一步:网格剖分。对矩形区域进行剖分,即在x方向对[a,b]进行步长为\Delta x的等距剖分,分成m份,得到m+1个节点x_{i}=a+i\cdot\Delta x,i=0,1,\cdot\cdot\cdot,m,其中\Delta x=(b-a)/m。在y方向对[c,d]进行步长为\Delta y的等距剖分,分成n份,得到n+1个节点y_{j}=c+j\cdot\Delta y,j=0,1,\cdot\cdot\cdot,n,其中\Delta y=(c-d)/n。然后用两族平行线x=x_{i},y=y_{j}将区域\Omega分成mn个小矩形,得到节点(x_{i},y_{j}),如图所示。X表示边界节点,其余为内部节点。

矩形区域划分

        第二步:弱化原方程,使得在离散点处成立,即

\left\{\begin{matrix} -(\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}})|_{(x_{i},y_{j})}=f(x_{i},y_{j}),(x_{i},y_{j})\in\Omega,\\ u(x_{s},y_{t})=\varphi(x_{s},y_{t}),(x_{s},y_{t})\in\Gamma \end{matrix}\right.

其中,1\leqslant i\leqslant m-1,1\leqslant j\leqslant n-1,s=0m0\leqslant t\leqslant n,t=0n0\leqslant s\leqslant m。也就是(x_{i},y_{j})为内节点,(x_{s},y_{t})为边界节点。

        第三步:用差商近似微商,建立数值格式,即

\frac{\partial^{2}u}{\partial x^{2}}(x_{i},y_{j})=\frac{u(x_{i-1},y_{j})-2u(x_{i},y_{j})+u(x_{i+1},y_{j})}{\Delta x^{2}}+O(\Delta x^{2})

\frac{\partial^{2}u}{\partial y^{2}}(x_{i},y_{j})=\frac{u(x_{i},y_{j-1})-2u(x_{i},y_{j})+u(x_{i},y_{j+1})}{\Delta y^{2}}+O(\Delta y^{2})

        将上面两式代入离散节点处的方程,可得

\left\{\begin{matrix} -(\frac{u(x_{i-1},y_{j})-2u(x_{i},y_{j})+u(x_{i+1},y_{j})}{\Delta x^{2}}+\frac{u(x_{i},y_{j-1})-2u(x_{i},y_{j})+u(x_{i},y_{j+1})}{\Delta y^{2}})=\\ f(x_{i},y_{j})+C_{1}(\Delta x)^{2}+C_{2}(\Delta y)^{2},1\leqslant i\leqslant m-1,1\leqslant j\leqslant n-1,\\ u_{s,t}=\varphi(x_s),y_{t},s=0,m,0\leqslant t\leqslant n;t=0,n,0\leqslant s\leqslant m \end{matrix}\right.

        用数值解代替精确解并忽略高阶项,可得数值格式为

\left\{\begin{matrix} -(\frac{u_{i-1,j}-2u_{i,j}+u_{i+1,j}}{(\Delta x)^{2}}+\frac{u_{i,j-1}-2u_{i,j}+u_{i,j+1}}{(\Delta y)^{2}})=f(x_{i},y_{j}),1\leqslant i\leqslant m-1,1\leqslant j\leqslant n-1,\\ u_{s,t}=\varphi(x_{s},y_{t}), s=0,m,0\leqslant t\leqslant n;t=0,n,0\leqslant s\leqslant m \end{matrix}\right.

整理上式可得

\left\{\begin{matrix} -\frac{u_{i-1,j}}{\Delta x^{2}}-\frac{u_{i+1,j}}{\Delta x^{2}}+2(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}})u_{i,j}-\frac{u_{i,j-1}}{\Delta y^{2}}-\frac{u_{i,j+1}}{\Delta y^{2}}=f(x_{i},y_{j}),1\leqslant i\leqslant m-1,1\leqslant j\leqslant n-1,\\ u_{s,t}=\varphi(x_{s},y_{t}), s=0,m,0\leqslant t\leqslant n;t=0,n,0\leqslant s\leqslant m \space\space(3) \end{matrix}\right.

        公式(3)每一步计算要涉及5个点,除中心点外其余4个点正好位于一个菱形的4个顶点,所以这个格式称为“五点菱形差分格式”,简称“五点格式”。

        第四步:差分格式求解。公式(3)无法写成线性方程组Ax=b的简单形式,只能写成

-\frac{1}{\Delta y^{2}}\begin{pmatrix} 1 & & & & \\ & 1 & & 0 & \\ & & \ddots & & \\ & 0 & & 1 & \\ & & & & 1 \end{pmatrix}\begin{pmatrix} u_{1,j-1}\\ u_{2,j-1}\\ \vdots\\ u_{m-2,j-1}\\ u_{m-1,j-1} \end{pmatrix}-\frac{1}{\Delta y^{2}}\begin{pmatrix} 1 & & & & \\ & 1 & & 0 & \\ & & \ddots & & \\ & 0 & & 1 & \\ & & & & 1 \end{pmatrix}\begin{pmatrix} u_{1,j+1}\\ u_{2,j+1}\\ \vdots\\ u_{m-2,j+1}\\ u_{m-1,j+1} \end{pmatrix}\begin{pmatrix} 2(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}) & -\frac{1}{\Delta x^{2}} & & 0 & \\ -\frac{1}{\Delta x^{2}} & 2(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}) & -\frac{1}{\Delta x^{2}}& & \\ & \ddots & \ddots& \ddots & \\ & & -\frac{1}{\Delta x^{2}} & 2(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}) & -\frac{1}{\Delta x^{2}}\\ & 0 & & -\frac{1}{\Delta x^{2}} & 2(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}) \end{pmatrix}\begin{pmatrix} u_{1,j}\\ u_{2,j}\\ \vdots\\ u_{m-2,j}\\ u_{m-1,j} \end{pmatrix}=\begin{pmatrix} f(x_{1},y_{j})+\frac{1}{\Delta x^{2}}u_{0,j}\\ f(x_{2},y_{j})\\ \vdots\\ f(x_{m-2},y_{j})\\ f(x_{m-1},y_{j})+\frac{1}{\Delta x^{2}}u_{m,j} \end{pmatrix}

        记                                \mathbf{u}_{j}=(u_{1,j},u_{2,j},\cdot\cdot\cdot,u_{m-1,j})^{T},0\leqslant j\leqslant n

且设                                     2(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}})=\alpha,\frac{1}{\Delta x^{2}}=\beta,\frac{1}{\Delta y^{2}}=\gamma

        则数值格式可写为

\begin{pmatrix} -\gamma & & & \\ & -\gamma & & \\ & & \ddots & \\ & & & -\gamma \end{pmatrix}\begin{pmatrix} u_{1,j-1}\\ u_{2,j-1}\\ \vdots\\ u_{m-1,j-1} \end{pmatrix}+\begin{pmatrix} \alpha & -\beta & & \\ -\beta & \alpha & -\beta & \\ & & \ddots & \\ & & -\beta & \alpha \end{pmatrix}\begin{pmatrix} u_{1,j}\\ u_{2,j}\\ \vdots\\ u_{m-1,j} \end{pmatrix}+\begin{pmatrix} -\gamma & & & \\ & -\gamma & & \\ & & \ddots & \\ & & & -\gamma \end{pmatrix}\begin{pmatrix} u_{1,j+1}\\ u_{2,j+1}\\ \vdots\\ u_{m-1,j+1} \end{pmatrix}=\begin{pmatrix} f(x_{1},y_{j})+\beta u_{0,j}\\ f(x_{2},y_{j})\\ \vdots\\ f(x_{m-2},y_{j})\\ f(x_{m-1},y_{j})+\beta u_{m,j} \end{pmatrix},1\leqslant j\leqslant n-1

        上式可简写为A(\mathbf{u}_{i-1}+\mathbf{u}_{i+1})+B\mathbf{u}_{j}=\mathbf{f}_{j},j=1,2,\cdot\cdot\cdot,n-1。其中,A=-\gamma I,且I为m-1阶单位矩阵:

B=\begin{pmatrix} \alpha & -\beta & & 0 & \\ -\beta & \alpha & -\beta & & \\ & \ddots & \ddots & \ddots & \\ & & -\beta & \alpha & -\beta \\ & 0 & & -\beta & \alpha \\ \end{pmatrix}\mathbf{f}_{j}=\begin{pmatrix} f(x_{1},y_{j})+\beta u_{0,j}\\ f(x_{2},y_{j})\\ \vdots\\ f(x_{m-2},y_{j})\\ f(x_{m-1},y_{j})+\beta u_{m,j} \end{pmatrix}

        为解出此方程组,将未知量\mathbf{u}_{j}按下标拉长为一个列向量,并写成块矩阵形式,有

\begin{pmatrix} B & A & & & \\ A & B & A & & \\ & \ddots & \ddots & \ddots & \\ & & A & B & A\\ & & & A &B \end{pmatrix}\begin{pmatrix} \mathbf{u}_{1}\\ \mathbf{u}_{2}\\ \vdots\\ \mathbf{u}_{n-2}\\ \mathbf{u}_{n-1} \end{pmatrix}=\begin{pmatrix} \mathbf{f}_{1}-A\mathbf{u}_{0}\\ \mathbf{f}_{2}\\ \vdots\\ \mathbf{f}_{n-2}\\ \mathbf{f}_{n-1}-A\mathbf{u}_{n} \end{pmatrix} \space\space(4)

        公式(4)的特点是:系数矩阵对称、正定,且绝大多数都是零元素,每一行最多只有5个非零元素,为稀疏矩阵。对于阶数不高的线性方程组的求解,直接法非常有效,而对于阶数高、系数矩阵稀疏的线性方程组,若采用直接法求解,就需要存储大量零元素。为减少运算律、节省内存,通常采用迭代法进行求解。在二维抛物型、双曲型方程的初边值问题中都曾遇到过这一类方程组,因为存在求解上的困难,后来就直接借助新的思路用交替方向隐式方法去处理数值逼近,从而避免了上述问题的求解。但事实上,公式(4)还是可以通过迭代法处理的,相比二维抛物型、双曲型方程初边值问题,由于不存在时间变量,处理起来会简单许多。具体的迭代法以及相应理论推导在下节中介绍(包括Jacobi迭代、Gauss-Seidel迭代、SOR迭代)。

三、算例实现

        用五点菱形格式求解椭圆型方程边值问题:

\left\{\begin{matrix} -(\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}})=(\pi^{2}-1)e^{x}sin(\pi y),0<x<2,0<y<1,\\ u(0,y)=sin(\pi y),u(2,y)=e^{2}sin(\pi y),0\leqslant y\leqslant 1,\\ u(x,0)=u(x,1)=0,0<x<2 \end{matrix}\right.

已知该问题精确解为u(x,y)=e^{x}sin(\pi y)。分别取步长\Delta x=\Delta y=1/32\Delta x=\Delta y=1/64,输出6个节点(0.5i,0.25)(0.5i,0.5),i=1,2,3处的数值解和误差。要求在各节点处最大误差的迭代误差限为0.5\times10^{-10}

代码如下:(采用Gauss-Seidel迭代)


#include <cmath>
#include <stdlib.h>
#include <stdio.h>
double pi=3.14159265359;int main(int argc, char* argv[])
{int m, n, i, j, k;double xa, xb, ya, yb, dx, dy, alpha, beta, gamma, err, maxerr;double *x, *y, **u, **temp;double leftboundary(double y);double rightboundary(double y);double topboundary(double x);double bottomboundary(double x);double f(double x, double y);double exact(double x, double y);xa=0.0;xb=2.0;ya=0.0;yb=1.0;m=128;n=64;printf("m=%d,n=%d.\n",m,n);dx=(xb-xa)/m;dy=(yb-ya)/n;beta=1.0/(dx*dx);gamma=1.0/(dy*dy);alpha=2*(beta+gamma);x=(double*)malloc(sizeof(double)*(m+1));for(i=0;i<=m;i++)x[i]=xa+i*dx;y=(double*)malloc(sizeof(double)*(n+1));for(j=0;j<=n;j++)y[j]=ya+j*dy;u=(double**)malloc(sizeof(double *)*(m+1));temp=(double**)malloc(sizeof(double *)*(m+1));for(i=0;i<=m;i++){u[i]=(double*)malloc(sizeof(double)*(n+1));temp[i]=(double*)malloc(sizeof(double)*(n+1));}for(j=0;j<=n;j++){u[0][j]=leftboundary(y[j]);u[m][j]=rightboundary(y[j]);}for(i=1;i<m;i++){u[i][0]=bottomboundary(x[i]);u[i][n]=topboundary(x[i]);}for(i=1;i<m;i++)for(j=1;j<n;j++)u[i][j]=0.0;for(i=0;i<=m;i++)for(j=0;j<=n;j++)temp[i][j]=u[i][j];//Gauss-Seidel迭代k=0;do{maxerr=0.0;for(i=1;i<m;i++){for(j=1;j<n;j++){temp[i][j]=(f(x[i],y[j])+beta*(u[i-1][j]+temp[i+1][j])+gamma*(u[i][j-1]+temp[i][j+1]))/alpha;err=temp[i][j]-u[i][j];if(err>maxerr)maxerr=err;u[i][j]=temp[i][j];}}k=k+1;}while(maxerr>0.5*1e-10);printf("k=%d\n",k);k=m/4;for(i=k;i<m;i=i+k){printf("(%.2f,0.25), y=%f, err=%.4e.\n",x[i],u[i][n/4],fabs(exact(x[i],y[n/4])-u[i][n/4]));}k=m/4;for(i=k;i<m;i=i+k){printf("(%.2f,0.50), y=%f, err=%.4e.\n",x[i],u[i][n/2],fabs(exact(x[i],y[n/2])-u[i][n/2]));}return 0;
}double leftboundary(double y)
{return sin(pi*y);
}
double rightboundary(double y)
{return exp(1.0)*exp(1.0)*sin(pi*y);
}
double topboundary(double x)
{return 0.0;
}
double bottomboundary(double x)
{return 0.0;
}
double f(double x, double y)
{return (pi*pi - 1)*exp(x)*sin(pi*y);
}
double exact(double x, double y)
{return exp(x)*sin(pi*y);
}

步长为\Delta x=\Delta y=1/32时,计算结果如下:

m=64,n=32.
k=3315
(0.50,0.25), y=1.166702, err=8.7958e-04.
(1.00,0.25), y=1.923620, err=1.5048e-03.
(1.50,0.25), y=3.170908, err=1.8751e-03.
(0.50,0.50), y=1.649965, err=1.2439e-03.
(1.00,0.50), y=2.720410, err=2.1281e-03.
(1.50,0.50), y=4.484341, err=2.6518e-03.

步长为\Delta x=\Delta y=1/64时,计算结果如下:

m=128,n=64.
k=12332
(0.50,0.25), y=1.166042, err=2.1984e-04.
(1.00,0.25), y=1.922492, err=3.7612e-04.
(1.50,0.25), y=3.169502, err=4.6879e-04.
(0.50,0.50), y=1.649032, err=3.1090e-04.
(1.00,0.50), y=2.718814, err=5.3191e-04.
(1.50,0.50), y=4.482352, err=6.6297e-04.

四、结论

        从计算结果可知,当步长减小为1/2时,误差减小为1/4,可见五点菱形差分格式是二阶收敛的。

这篇关于偏微分方程算法之五点菱形差分法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/938293

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯: