数据序列化机制-Avro

2024-04-26 02:08
文章标签 数据 机制 序列化 avro

本文主要是介绍数据序列化机制-Avro,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

序列化主要是将内存缓冲区、数据结构或者对象中的数据转换为能够在网路上传输或者持久化存储(比如磁盘)中存储的二进制文件。

1.Avro的特性?

1)与语言无关

2)基于模式:Avro会序列化数据时会将模式写入其中,Avro序列化数据到一个压缩的二进制格式

3)使用类Json的格式来描述数据的结构,并且支持多种语言,像Java, C, C++, C#, Python, and Ruby。

4)序列化速度快且序列化过后数据存储体积小

5)支持多种数据类型

2.Avro的schema

Avro的Schema用JSON表示。Schema定义了简单数据类型和复杂数据类型。

基本类型

其中简单数据类型有以下8种:

类型含义
null没有值
boolean布尔值
int32位有符号整数
long64位有符号整数
float单精度(32位)的IEEE 754浮点数
double双精度(64位)的IEEE 754浮点数
bytes8位无符号字节序列
string字符串

基本类型没有属性,基本类型的名字也就是类型的名字,比如:

{"type": "string"}

复杂类型

Avro提供了6种复杂类型。分别是Record,Enum,Array,Map,Union和Fixed。

Record

Record类型使用的类型名字是 “record”,还支持其它属性的设置:

name:record类型的名字(必填)

namespace:命名空间(可选)

doc:这个类型的文档说明(可选)

aliases:record类型的别名,是个字符串数组(可选)

fields:record类型中的字段,是个对象数组(必填)。每个字段需要以下属性:

  1. name:字段名字(必填)
  2. doc:字段说明文档(可选)
  3. type:一个schema的json对象或者一个类型名字(必填)
  4. default:默认值(可选)
  5. order:排序(可选),只有3个值ascending(默认),descending或ignore
  6. aliases:别名,字符串数组(可选)

一个Record类型例子,定义一个元素类型是Long的链表:

{"type": "record", "name": "LongList","aliases": ["LinkedLongs"],                      // old name for this"fields" : [{"name": "value", "type": "long"},             // each element has a long{"name": "next", "type": ["null", "LongList"]} // optional next element]
}

 

Enum

枚举类型的类型名字是”enum”,还支持其它属性的设置:

name:枚举类型的名字(必填)
namespace:命名空间(可选)
aliases:字符串数组,别名(可选)
doc:说明文档(可选)
symbols:字符串数组,所有的枚举值(必填),不允许重复数据。

一个枚举类型的例子:

{ "type": "enum","name": "Suit","symbols" : ["SPADES", "HEARTS", "DIAMONDS", "CLUBS"]
}

Array

数组类型的类型名字是”array”并且只支持一个属性:

items:数组元素的schema

一个数组例子:

{"type": "array", "items": "string"}

Map

Map类型的类型名字是”map”并且只支持一个属性:

values:map值的schema

Map的key必须是字符串。

一个Map例子:

{"type": "map", "values": "long"}

Union

组合类型,表示各种类型的组合,使用数组进行组合。比如[“null”, “string”]表示类型可以为null或者string。

组合类型的默认值是看组合类型的第一个元素,因此如果一个组合类型包括null类型,那么null类型一般都会放在第一个位置,这样子的话这个组合类型的默认值就是null。

组合类型中不允许同一种类型的元素的个数不会超过1个,除了record,fixed和enum。比如组合类中有2个array类型或者2个map类型,这是不允许的。

组合类型不允许嵌套组合类型。

Fixed

混合类型的类型名字是fixed,支持以下属性:

name:名字(必填)
namespace:命名空间(可选)
aliases:字符串数组,别名(可选)
size:一个整数,表示每个值的字节数(必填)

比如16个字节数的fixed类型例子如下:

{"type": "fixed", "size": 16, "name": "md5"}

1个Avro例子

首先定义一个User的schema:

{
"namespace": "example.avro","type": "record","name": "User","fields": [{"name": "name", "type": "string"},{"name": "favorite_number",  "type": "int"},{"name": "favorite_color", "type": "string"}]
}

User有3个属性,分别是name,favorite_number和favorite_color。

json文件内容:

{"name":"format","favorite_number":1,"favorite_color":"red"}
{"name":"format2","favorite_number":2,"favorite_color":"black"}
{"name":"format3","favorite_number":666,"favorite_color":"blue"}

使用avro工具将json文件转换成avro文件:

ava -jar avro-tools-1.8.0.jar fromjson --schema-file user.avsc user.json > user.avro

可以设置压缩格式:

java -jar avro-tools-1.8.0.jar fromjson --codec snappy --schema-file user.avsc user.json > user2.avro

将avro文件反转换成json文件:

java -jar avro-tools-1.8.0.jar tojson user.avro
java -jar avro-tools-1.8.0.jar --pretty tojson user.avro

得到avro文件的meta:

java -jar avro-tools-1.8.0.jar getmeta user.avro

输出:

avro.codec    null
avro.schema    {"type":"record","name":"User","namespace":"example.avro","fields":[{"name":"name","type":"string"},{"name":"favorite_number","type":"int"},{"name":"favorite_color","type":"string"}]}

 将文本文件转换成avro文件:

java -jar avro-tools-1.8.0.jar fromtext user.txt usertxt.avro

Avro使用生成的代码进行序列化和反序列化

以上面一个例子的schema为例讲解。

Avro可以根据schema自动生成对应的类:

java -jar /path/to/avro-tools-1.8.0.jar compile schema user.avsc .

user.avsc的namespace为example.avro,name为User。最终在当前目录生成的example/avro目录下有个User.java文件。

├── example │ └── avro │ └── User.java

使用Avro生成的代码创建User:

User user1 = new User();
user1.setName("Format");
user1.setFavoriteColor("red");
user1.setFavoriteNumber(666);User user2 = new User("Format2", 66, "blue");User user3 = User.newBuilder().setName("Format3").setFavoriteNumber(6).setFavoriteColor("black").build();

可以使用有参的构造函数和无参的构造函数,也可以使用Builder构造User。

序列化:

DatumWrite接口用来把java对象转换成内存中的序列化格式,SpecificDatumWriter用来生成类并且指定生成的类型。

最后使用DataFileWriter来进行具体的序列化,create方法指定文件和schema信息,append方法用来写数据,最后写完后close文件

DatumWriter<User> userDatumWriter = new SpecificDatumWriter<User>(User.class);DataFileWriter<User> dataFileWriter = new DataFileWriter<User>(userDatumWriter);
dataFileWriter.create(user1.getSchema(), new File("users.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.append(user3);
dataFileWriter.close();

反序列化:

反序列化跟序列化很像,相应的Writer换成Reader。这里只创建一个User对象是为了性能优化,每次都重用这个User对象,如果文件量很大,对象分配和垃圾收集处理的代价很昂贵。如果不考虑性能,可以使用 for (User user : dataFileReader) 循环遍历对象

File file = new File("users.avro");
DatumReader<User> userDatumReader = new SpecificDatumReader<User>(User.class);
DataFileReader<User> dataFileReader = new DataFileReader<User>(file, userDatumReader);
User user = null;
while(dataFileReader.hasNext()) {user = dataFileReader.next(user);System.out.println(user);
}

打印出:

{"name": "Format", "favorite_number": 666, "favorite_color": "red"}
{"name": "Format2", "favorite_number": 66, "favorite_color": "blue"}
{"name": "Format3", "favorite_number": 6, "favorite_color": "black"}

Avro不使用生成的代码进行序列化和反序列化

虽然Avro为我们提供了根据schema自动生成类的方法,我们也可以自己创建类,不使用Avro的自动生成工具。

创建User:

首先使用Parser读取schema信息并且创建Schema类:

Schema schema = new Schema.Parser().parse(new File("user.avsc"));

有了Schema之后可以创建record:

GenericRecord user1 = new GenericData.Record(schema);
user1.put("name", "Format");
user1.put("favorite_number", 666);
user1.put("favorite_color", "red");GenericRecord user2 = new GenericData.Record(schema);
user2.put("name", "Format2");
user2.put("favorite_number", 66);
user2.put("favorite_color", "blue");

使用GenericRecord表示User,GenericRecord会根据schema验证字段是否正确,如果put进了不存在的字段 user1.put(“favorite_animal”, “cat”) ,那么运行的时候会得到AvroRuntimeException异常。

序列化:

序列化跟生成的User类似,只不过schema是自己构造的,不是User中拿的。

Schema schema = new Schema.Parser().parse(new File("user.avsc"));
GenericRecord user1 = new GenericData.Record(schema);
user1.put("name", "Format");
user1.put("favorite_number", 666);
user1.put("favorite_color", "red");GenericRecord user2 = new GenericData.Record(schema);
user2.put("name", "Format2");
user2.put("favorite_number", 66);
user2.put("favorite_color", "blue");DatumWriter<GenericRecord> datumWriter = new SpecificDatumWriter<GenericRecord>(schema);
DataFileWriter<GenericRecord> dataFileWriter = new DataFileWriter<GenericRecord>(datumWriter);
dataFileWriter.create(schema, new File("users2.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.close();

反序列化:

反序列化跟生成的User类似,只不过schema是自己构造的,不是User中拿的。

Schema schema = new Schema.Parser().parse(new File("user.avsc"));
File file = new File("users2.avro");
DatumReader<GenericRecord> datumReader = new SpecificDatumReader<GenericRecord>(schema);
DataFileReader<GenericRecord> dataFileReader = new DataFileReader<GenericRecord>(file, datumReader);
GenericRecord user = null;
while(dataFileReader.hasNext()) {user = dataFileReader.next(user);System.out.println(user);
}

打印出:

{"name": "Format", "favorite_number": 666, "favorite_color": "red"}
{"name": "Format2", "favorite_number": 66, "favorite_color": "blue"}

一些注意点

Avro解析json文件的时候,如果类型是Record并且里面有字段是union并且允许空值的话,需要进行转换。因为[“bytes”, “string”]和[“int”,”long”]这2个union类型在json中是有歧义的,第一个union在json中都会被转换成string类型,第二个union在json中都会被转换成数字类型。

所以如果json值的null的话,在avro提供的json中直接写null,否则使用只有一个键值对的对象,键是类型,值的具体的值。

比如:

{
"namespace": "example.avro","type": "record","name": "User","fields": [{"name": "name", "type": "string"},{"name": "favorite_number",  "type": ["int","null"]},{"name": "favorite_color", "type": ["string","null"]}]
}

在要转换成json文件的时候要写成这样:

{"name":"format","favorite_number":{"int":1},"favorite_color":{"string":"red"}}
{"name":"format2","favorite_number":null,"favorite_color":{"string":"black"}}
{"name":"format3","favorite_number":{"int":66},"favorite_color":null}

Spark读取Avro文件

直接遍历avro文件,得到GenericRecord进行处理:

val conf = new SparkConf().setMaster("local").setAppName("AvroTest")val sc = new SparkContext(conf)val rdd = sc.hadoopFile[AvroWrapper[GenericRecord], NullWritable, AvroInputFormat[GenericRecord]](this.getClass.getResource("/").toString + "users.avro")val nameRdd = rdd.map(s => s._1.datum().get("name").toString)nameRdd.collect().foreach(println)

使用Avro需要注意的地方

笔者使用Avro的时候暂时遇到了下面2个坑。先记录一下,以后遇到新的坑会更新这篇文章。

1.如果定义了unions类型的字段,而且unions中有null选项的schema,比如如下schema:

{
"namespace": "example.avro","type": "record","name": "User2","fields": [{"name": "name", "type": "string"},{"name": "favorite_number",  "type": ["null","int"]},{"name": "favorite_color", "type": ["null","string"]}]
}

这样的schema,如果不使用Avro自动生成的model代码进行insert,并且insert中的model数据有null数据的话。然后用spark读avro文件的话,会报org.apache.avro.AvroTypeException: Found null, expecting int … 这样的错误。

这一点很奇怪,但是使用Avro生成的Model进行insert的话,sprak读取就没有任何问题。 很困惑。

2.如果使用了Map类型的字段,avro生成的model中的Map的Key默认类型为CharSequence。这种model我们insert数据的话,用String是没有问题的。但是spark读取之后要根据Key拿这个Map数据的时候,永远得到的是null。

stackoverflow上有一个页面说到了这个问题。http://stackoverflow.com/questions/19728853/apache-avro-map-uses-charsequence-as-key

需要在map类型的字段里加上”avro.java.string”: “String”这个选项, 然后compile的时候使用-string参数即可。

比如以下这个schema:

{
"namespace": "example.avro","type": "record","name": "User3","fields": [{"name": "name", "type": "string"},{"name": "favorite_number",  "type": ["null","int"]},{"name": "favorite_color", "type": ["null","string"]},{"name": "scores", "type": ["null", {"type": "map", "values": "string", "avro.java.string": "String"}]}]
}

 

这篇关于数据序列化机制-Avro的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936431

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

SpringKafka错误处理(重试机制与死信队列)

《SpringKafka错误处理(重试机制与死信队列)》SpringKafka提供了全面的错误处理机制,通过灵活的重试策略和死信队列处理,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、Spring Kafka错误处理基础二、配置重试机制三、死信队列实现四、特定异常的处理策略五

如何配置Spring Boot中的Jackson序列化

《如何配置SpringBoot中的Jackson序列化》在开发基于SpringBoot的应用程序时,Jackson是默认的JSON序列化和反序列化工具,本文将详细介绍如何在SpringBoot中配置... 目录配置Spring Boot中的Jackson序列化1. 为什么需要自定义Jackson配置?2.

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt