Dense embedding model 和 sparse embedding model 对比

2024-04-25 22:52

本文主要是介绍Dense embedding model 和 sparse embedding model 对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Dense embedding modelsparse embedding model 都是将高维稀疏向量嵌入到低维稠密向量的技术,常用于自然语言处理 (NLP) 任务中。两种模型的主要区别在于它们如何表示嵌入向量:

Dense embedding model 使用稠密向量来表示每个单词或短语。每个维度的值代表该单词或短语在语义空间中对应方面的重要性。例如,一个维度的值可能表示该单词的积极性或消极性,另一个维度的值可能表示该单词的正式程度或非正式程度。

Sparse embedding model 使用稀疏向量来表示每个单词或短语。只有少数维度的值是非零的,这些值代表该单词或短语在语义空间中的重要特征。例如,一个单词的嵌入向量可能只有几个非零维度,表示该单词与其他几个单词的语义相关性很强。

以下是一些 dense embedding model 和 sparse embedding model 的优缺点比较:

特性Dense embedding modelSparse embedding model
参数数量更多更少
计算成本更高更低
稀疏性更低更高
可解释性更低更高

drive_spreadsheet导出到 Google 表格

Dense embedding model 的优点是能够捕捉到单词或短语在语义空间中的更细粒度信息。但是,它们的参数数量更多,计算成本也更高。

Sparse embedding model 的优点是参数数量更少,计算成本更低。但是,它们可能无法捕捉到单词或短语在语义空间中的所有信息。

在实际应用中,哪种模型更好取决于具体的任务和数据集。 如果数据集很大,并且计算资源充足,那么 dense embedding model 可能是更好的选择。如果数据集较小,或者计算资源有限,那么 sparse embedding model 可能是更好的选择。

这篇关于Dense embedding model 和 sparse embedding model 对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936019

相关文章

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

免费也能高质量!2024年免费录屏软件深度对比评测

我公司因为客户覆盖面广的原因经常会开远程会议,有时候说的内容比较广需要引用多份的数据,我记录起来有一定难度,所以一般都用录屏工具来记录会议内容。这次我们来一起探索有什么免费录屏工具可以提高我们的工作效率吧。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  录屏软件录屏功能就是本职,这款录屏工具在录屏模式上提供了多种选项,可以选择屏幕录制、窗口

MVC(Model-View-Controller)和MVVM(Model-View-ViewModel)

1、MVC MVC(Model-View-Controller) 是一种常用的架构模式,用于分离应用程序的逻辑、数据和展示。它通过三个核心组件(模型、视图和控制器)将应用程序的业务逻辑与用户界面隔离,促进代码的可维护性、可扩展性和模块化。在 MVC 模式中,各组件可以与多种设计模式结合使用,以增强灵活性和可维护性。以下是 MVC 各组件与常见设计模式的关系和作用: 1. Model(模型)

类的load方法和initialize方法对比

1. load方法在main()之前被调用,而initialize方法在main()之后调用 load方法实际是在load_images过程中被调用的。load_images会将当前应用依赖的所有镜像(动态库)加载到内存,在在加载中首先是对镜像进行扫描,将所有包含 load 方法的类加入列表 loadable_classes ,然后从这个列表中逐一调用其所包含的 load 方法。 +[XXCl

JavaScript正则表达式六大利器:`test`、`exec`、`match`、`matchAll`、`search`与`replace`详解及对比

在JavaScript中,正则表达式(Regular Expression)是一种用于文本搜索、替换、匹配和验证的强大工具。本文将深入解析与正则表达式相关的几个主要执行方法:test、exec、match、matchAll、search和replace,并对它们进行对比,帮助开发者更好地理解这些方法的使用场景和差异。 正则表达式基础 在深入解析方法之前,先简要回顾一下正则表达式的基础知识。正则

【HarmonyOS】-TaskPool和Worker的对比实践

ArkTS提供了TaskPool与Worker两种多线程并发方案,下面我们将从其工作原理、使用效果对比两种方案的差异,进而选择适用于ArkTS图片编辑场景的并发方案。 TaskPool与Worker工作原理 TaskPool与Worker两种多线程并发能力均是基于 Actor并发模型实现的。Worker主、子线程通过收发消息进行通信;TaskPool基于Worker做了更多场景化的功能封装,例

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况 原函数为一元二次凹函数(开口向下),如下: 因为要使得其存在正解,必须满足,那么。 上述函数的最优结果为:,。 对应的mathematica代码如下: Clear["Global`*"]f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)Maximize[{f0[x, a, b,

claude和chatgpt对比:哪一个更适合你?

前言 我们都知道,Claude和ChatGPT都是当前人工智能领域中备受关注的对话生成模型,作为国外AI模型两大巨头,好像他们的实力都不相上下呀! 这时就会有很多同学疑惑,那我如果想选择AI,到底是选择Claude,还是ChatGPT呢?哪个更好呢?他们之间有什么不同独特的地方呢?他们又分别适合在哪些场景使用呢? 技术背景 Claude是由Anthropic公司开发的高性能模型,而Chat

算法复杂度 —— 数据结构前言、算法效率、时间复杂度、空间复杂度、常见复杂度对比、复杂度算法题(旋转数组)

目录 一、数据结构前言 1、数据结构 2、算法 3、学习方法 二、 算法效率 引入概念:算法复杂度  三、时间复杂度 1、大O的渐进表示法 2、时间复杂度计算示例  四、空间复杂度 计算示例:空间复杂度 五、常见复杂度对比 六、复杂度算法题(旋转数组) 1、思路1 2、思路2 3、思路3 一、数据结构前言 1、数据结构         数据结构(D

Matplotlib图像读取和输出及jpg、png格式对比,及透明通道alpha设置

图像像素值 图像像素值一般size为3,也就是通道数,分别代表R,G,B,如果只有单一 一个值则表示灰度值,也就是说一张二维图片,当长和宽都为1080时,那么若是灰度图像,图像尺寸为(1080,1080,1)若是RGB图像则为(1080,1080,3), jpg、png图像格式 jpg图像的灰度值范围和RGB范围为[0,255],数值类型为uint8,也就是无符号整数 png图像的灰度值范