介绍Phi-3:微软重新定义小型语言模型(SLM)的可能性

2024-04-25 03:52

本文主要是介绍介绍Phi-3:微软重新定义小型语言模型(SLM)的可能性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

微软最近推出了名为Phi-3的开放式AI模型家族,这是一系列最具性价比的小型语言模型(SLM)。Phi-3模型在各种语言、推理、编码和数学基准测试中的表现超越了同等大小甚至更大型号的模型。此次发布扩展了为客户提供高质量模型的选择,使他们在构建和开发生成式AI应用程序时有更多的实用选择。

从今天开始,3.8亿参数的Phi-3-mini模型已在微软Azure AI Studio、Hugging Face和Ollama平台上提供。https://huggingface.co/collections/microsoft/phi-3-6626e15e9585a200d2d761e3

Phi-3-mini提供两种上下文长度变体——4K和128K令牌。它是首个支持高达128K令牌上下文窗口的同类模型,且对质量的影响很小。它经过指令调优,训练以遵循反映人们正常沟通的各种指令类型,确保模型开箱即用。它在Azure AI上可用,利用部署-评估-微调工具链,并在Ollama上可供开发者在本地笔记本电脑上运行。它针对ONNX运行时进行了优化,支持Windows DirectML,并具有跨平台支持,包括图形处理单元(GPU)、CPU甚至移动硬件。它还作为NVIDIA NIM微服务提供,带有标准API接口,可以在任何地方部署,并已针对NVIDIA GPU进行了优化。

在接下来的几周内,将向Phi-3家族添加更多模型,为客户在质量-成本曲线上提供更多灵活性。Phi-3-small(70亿)和Phi-3-medium(140亿)将很快在Azure AI模型目录和其他模型园中提供。

微软持续提供在质量-成本曲线上最佳的模型,今天的Phi-3发布扩大了具有最先进小型模型的选择。Phi-3模型显著超越了同等大小和更大大小的语言模型在关键基准测试上的表现。例如,Phi-3-mini的表现优于其两倍大的模型,而Phi-3-small和Phi-3-medium则超越了包括GPT-3.5T在内的更大型号。

所有报告的数字都是使用相同的流程产生的,以确保数字之间的可比性。因此,由于评估方法的轻微差异,这些数字可能与其他公布的数字不同。我们的技术论文提供了更多关于基准测试的详细信息。

Phi-3模型按照微软的负责任AI标准开发,该标准是一套公司范围内基于责任、透明度、公平性、可靠性与安全、隐私与安全以及包容性的六大原则的要求。Phi-3模型经过严格的安全测量和评估、红队测试、敏感用途审查以及遵守安全指南,以帮助确保这些模型按照微软的标准和最佳实践负责任地开发、测试和部署。

微软利用Azure AI推出助手产品并使客户能够通过生成式AI转型其业务,这突显了对不同大小模型的需求。小型语言模型,如Phi-3,特别适用于资源受限环境、响应时间要求快的场景以及成本受限的用例。

Phi-3-mini特别适用于设备上使用,尤其是在与ONNX运行时进一步优化后,可以跨平台使用。Phi-3模型的较小大小也使得微调或定制更加容易和经济。此外,它们较低的计算需求使得它们是一个成本更低、延迟更低的选择。较长的上下文窗口使得它们能够接收和推理大量文本内容——文档、网页、代码等。Phi-3-mini展示了强大的推理和逻辑能力,使其成为分析任务的理想选择。

客户已经在使用Phi-3构建解决方案。例如,在农业领域,Phi-3已经展现了其价值,尤其是在互联网可能不易获得的地方。如此强大的小型模型连同微软的助手模板,可在需要时为农民提供,且运行成本更低,使AI技术更加普及。

印度的领先商业集团ITC正在利用Phi-3作为其与微软在Krishi Mitra农民应用助手上持续合作的一部分。ITCMAARS技术总监Saif Naik表示:“我们与Krishi Mitra助手的目标是在保持大型语言模型的准确性的同时提高效率。我们很高兴能与微软合作使用经过精细调整的Phi-3来实现我们的目标——效率和准确性!”

这篇关于介绍Phi-3:微软重新定义小型语言模型(SLM)的可能性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933633

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选