算法学习笔记Day9——动态规划初探

2024-04-25 03:04

本文主要是介绍算法学习笔记Day9——动态规划初探,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、介绍

本文解决几个问题:动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?

1. 动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不过在计算机问题上应用比较多,比如说让你求最长递增子序列呀,最小编辑距离呀等等。

2. 动态规划的核心思想就是穷举求最值,但只有列出正确的「状态转移方程」,才能正确地穷举。你需要判断算法问题是否具备「最优子结构」,是否能够通过子问题的最值得到原问题的最值。另外,动态规划问题存在「重叠子问题」,如果暴力穷举的话效率会很低,所以需要你使用「备忘录」或者「DP table」来优化穷举过程,避免不必要的计算。

以上提到的重叠子问题、最优子结构、状态转移方程就是动态规划三要素。

3. 思维框架:明确 base case -> 明确「状态」-> 明确「选择」 -> 定义 dp 数组/函数的含义

递归是自顶向下,动态规划是自底向上

4. 带备忘录的递归和动态规划实际上是等价的,动态规划是从底层开始,一步一步完成对数组的完善,所以不需要备忘录,或者说dp数组本身就是备忘录,递归会遇到很多重复的子问题,所以需要备忘录来简化。

二、例题

例题1:斐波那契数

分析

写出状态转移方程,写出基底,就可以开始自底向上构造了。

代码

思路1:自底向上解法

class Solution {
public:int fib(int n) {if(n == 0 || n == 1){return n;}int fib_1 = 1, fib_2 = 0;int fib_i;for(int i = 2; i<= n; i++){fib_i = fib_1 + fib_2;fib_2 = fib_1;fib_1 = fib_i;}return fib_i;}
};

思路2:自顶向下解法

class Solution {
public:vector<int> diary;int recursion(int n){//基地if(n == 0 || n == 1){return n;}//查日记if(diary[n] != -1){return diary[n];}//日记没查到,更新日记,用递归更新它diary[n] = recursion(n-1) + recursion(n-2);//再查找日记本return diary[n];}int fib(int n) {diary.resize(n+1, -1);return recursion(n);}
};

例题2:零钱兑换

分析

写出状态方程就可以了

代码

思路1:带备忘录的递归

class Solution {
public:vector<int> diary;int dp(vector<int>& coins, int amount){if(amount < 0){return -1;}if(amount == 0){return 0;}if(diary[amount] != 0){return diary[amount];}int ans = INT_MAX;for(int coin : coins){int subsolution = dp(coins, amount - coin);if(subsolution != -1){ans = min(subsolution+1, ans);}}diary[amount] = ans==INT_MAX ? -1:ans;return diary[amount];}int coinChange(vector<int>& coins, int amount) {diary.resize(amount+1, 0);return dp(coins, amount);}
};

不知道为什么把diary初始化为-1就会超时,推测是-1表示不可能的情况,有很多正数diary也是-1,就容易进入循环,但是0只有0这个情况。

思路2:dp迭代

class Solution {
public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount + 1, INT_MAX-1);//base situationdp[0] = 0;for(int i  =0; i<=amount; i++){for(int coin : coins){if(i - coin < 0){continue;}dp[i] = min(dp[i], dp[i-coin] + 1);}}return dp[amount]==INT_MAX-1?-1:dp[amount];}
};

例题3:最长递增子序列

分析

首先要明确dp数组代表什么,这里是以 位置i数字 结尾的最长字序列长度,对于每个位置,比较前面的位置,只要它大于某个元素,就可以和那个元素的最长子序列组成新的最长子序列。

代码

class Solution {
public:int lengthOfLIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);for(int i  = 0; i< nums.size(); i++){for(int j = 0; j<i; j++){if(nums[i] > nums[j])dp[i] = max(dp[i], dp[j] + 1);}}return *max_element(dp.begin(), dp.end());}
};

例题4:俄罗斯套娃信封问题 

代码

class Solution {
public:int maxEnvelopes(vector<vector<int>>& envelopes) {int n = envelopes.size();sort(envelopes.begin(), envelopes.end(), [](vector<int>& a, vector<int>& b)->bool{return a[0] == b[0]? a[1] > b[1] : a[0] < b[0];});vector<int> dp(n, 1);for(int i = 0; i<n; i++){for(int j = 0; j< i; j++){if(envelopes[i][1] > envelopes[j][1]){dp[i] = max(dp[i], dp[j] + 1);}}}return *max_element(dp.begin(), dp.end());}
};

 

三、总结

i)斐波那契数列的问题,解释了如何通过「备忘录」或者「dp table」的方法来优化递归树,并且明确了这两种方法本质上是一样的,只是自顶向下和自底向上的不同而已。

ii)凑零钱的问题,展示了如何流程化确定「状态转移方程」,只要通过状态转移方程写出暴力递归解,剩下的也就是优化递归树,消除重叠子问题而已。

iii)二维数组也可以排序,要传入一个lamda表达式来说明排序的方式,第四题套娃问题,同样长的信封必须按宽的逆序排列,因为同样大小是不可以嵌套的,如果顺序排列,求最长递增子序列的时候就会多一个。

这篇关于算法学习笔记Day9——动态规划初探的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933546

相关文章

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx