算法学习笔记Day9——动态规划初探

2024-04-25 03:04

本文主要是介绍算法学习笔记Day9——动态规划初探,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、介绍

本文解决几个问题:动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?

1. 动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不过在计算机问题上应用比较多,比如说让你求最长递增子序列呀,最小编辑距离呀等等。

2. 动态规划的核心思想就是穷举求最值,但只有列出正确的「状态转移方程」,才能正确地穷举。你需要判断算法问题是否具备「最优子结构」,是否能够通过子问题的最值得到原问题的最值。另外,动态规划问题存在「重叠子问题」,如果暴力穷举的话效率会很低,所以需要你使用「备忘录」或者「DP table」来优化穷举过程,避免不必要的计算。

以上提到的重叠子问题、最优子结构、状态转移方程就是动态规划三要素。

3. 思维框架:明确 base case -> 明确「状态」-> 明确「选择」 -> 定义 dp 数组/函数的含义

递归是自顶向下,动态规划是自底向上

4. 带备忘录的递归和动态规划实际上是等价的,动态规划是从底层开始,一步一步完成对数组的完善,所以不需要备忘录,或者说dp数组本身就是备忘录,递归会遇到很多重复的子问题,所以需要备忘录来简化。

二、例题

例题1:斐波那契数

分析

写出状态转移方程,写出基底,就可以开始自底向上构造了。

代码

思路1:自底向上解法

class Solution {
public:int fib(int n) {if(n == 0 || n == 1){return n;}int fib_1 = 1, fib_2 = 0;int fib_i;for(int i = 2; i<= n; i++){fib_i = fib_1 + fib_2;fib_2 = fib_1;fib_1 = fib_i;}return fib_i;}
};

思路2:自顶向下解法

class Solution {
public:vector<int> diary;int recursion(int n){//基地if(n == 0 || n == 1){return n;}//查日记if(diary[n] != -1){return diary[n];}//日记没查到,更新日记,用递归更新它diary[n] = recursion(n-1) + recursion(n-2);//再查找日记本return diary[n];}int fib(int n) {diary.resize(n+1, -1);return recursion(n);}
};

例题2:零钱兑换

分析

写出状态方程就可以了

代码

思路1:带备忘录的递归

class Solution {
public:vector<int> diary;int dp(vector<int>& coins, int amount){if(amount < 0){return -1;}if(amount == 0){return 0;}if(diary[amount] != 0){return diary[amount];}int ans = INT_MAX;for(int coin : coins){int subsolution = dp(coins, amount - coin);if(subsolution != -1){ans = min(subsolution+1, ans);}}diary[amount] = ans==INT_MAX ? -1:ans;return diary[amount];}int coinChange(vector<int>& coins, int amount) {diary.resize(amount+1, 0);return dp(coins, amount);}
};

不知道为什么把diary初始化为-1就会超时,推测是-1表示不可能的情况,有很多正数diary也是-1,就容易进入循环,但是0只有0这个情况。

思路2:dp迭代

class Solution {
public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount + 1, INT_MAX-1);//base situationdp[0] = 0;for(int i  =0; i<=amount; i++){for(int coin : coins){if(i - coin < 0){continue;}dp[i] = min(dp[i], dp[i-coin] + 1);}}return dp[amount]==INT_MAX-1?-1:dp[amount];}
};

例题3:最长递增子序列

分析

首先要明确dp数组代表什么,这里是以 位置i数字 结尾的最长字序列长度,对于每个位置,比较前面的位置,只要它大于某个元素,就可以和那个元素的最长子序列组成新的最长子序列。

代码

class Solution {
public:int lengthOfLIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);for(int i  = 0; i< nums.size(); i++){for(int j = 0; j<i; j++){if(nums[i] > nums[j])dp[i] = max(dp[i], dp[j] + 1);}}return *max_element(dp.begin(), dp.end());}
};

例题4:俄罗斯套娃信封问题 

代码

class Solution {
public:int maxEnvelopes(vector<vector<int>>& envelopes) {int n = envelopes.size();sort(envelopes.begin(), envelopes.end(), [](vector<int>& a, vector<int>& b)->bool{return a[0] == b[0]? a[1] > b[1] : a[0] < b[0];});vector<int> dp(n, 1);for(int i = 0; i<n; i++){for(int j = 0; j< i; j++){if(envelopes[i][1] > envelopes[j][1]){dp[i] = max(dp[i], dp[j] + 1);}}}return *max_element(dp.begin(), dp.end());}
};

 

三、总结

i)斐波那契数列的问题,解释了如何通过「备忘录」或者「dp table」的方法来优化递归树,并且明确了这两种方法本质上是一样的,只是自顶向下和自底向上的不同而已。

ii)凑零钱的问题,展示了如何流程化确定「状态转移方程」,只要通过状态转移方程写出暴力递归解,剩下的也就是优化递归树,消除重叠子问题而已。

iii)二维数组也可以排序,要传入一个lamda表达式来说明排序的方式,第四题套娃问题,同样长的信封必须按宽的逆序排列,因为同样大小是不可以嵌套的,如果顺序排列,求最长递增子序列的时候就会多一个。

这篇关于算法学习笔记Day9——动态规划初探的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933546

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig