YOLOv9训练损失、精度、mAP绘图功能 | 支持多结果对比,多结果绘在一个图片(消融实验、科研必备)

本文主要是介绍YOLOv9训练损失、精度、mAP绘图功能 | 支持多结果对比,多结果绘在一个图片(消融实验、科研必备),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、本文介绍

本文给大家带来的是YOLOv9系列的绘图功能,我将向大家介绍YOLO系列的绘图功能。我们在进行实验时,经常需要比较多个结果,针对这一问题,我写了点代码来解决这个问题,它可以根据训练结果绘制损失(loss)和mAP(平均精度均值)的对比图。这个工具不仅支持多个文件的对比分析,还允许大家在现有代码的基础上进行修,从而达到数据可视化的功能,大家也可以将对比图放在论文中进行对比也是非常不错的选择。

先展示一下效果图-> 

专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

损失对比图片->

目录

一、本文介绍

二、绘图工具核心代码 

三、使用讲解 

四、本文总结


二、绘图工具核心代码 

import os
import pandas as pd
import matplotlib.pyplot as pltdef plot_metrics_and_loss(experiment_names, metrics_info, loss_info, metrics_subplot_layout, loss_subplot_layout,metrics_figure_size=(15, 10), loss_figure_size=(15, 10), base_directory='runs/train'):# Plot metricsplt.figure(figsize=metrics_figure_size)for i, (metric_name, title) in enumerate(metrics_info):plt.subplot(*metrics_subplot_layout, i + 1)for name in experiment_names:file_path = os.path.join(base_directory, name, 'results.csv')data = pd.read_csv(file_path)column_name = [col for col in data.columns if col.strip() == metric_name][0]plt.plot(data[column_name], label=name)plt.xlabel('Epoch')plt.title(title)plt.legend()plt.tight_layout()metrics_filename = 'metrics_curves.png'plt.savefig(metrics_filename)plt.show()# Plot lossplt.figure(figsize=loss_figure_size)for i, (loss_name, title) in enumerate(loss_info):plt.subplot(*loss_subplot_layout, i + 1)for name in experiment_names:file_path = os.path.join(base_directory, name, 'results.csv')data = pd.read_csv(file_path)column_name = [col for col in data.columns if col.strip() == loss_name][0]plt.plot(data[column_name], label=name)plt.xlabel('Epoch')plt.title(title)plt.legend()plt.tight_layout()loss_filename = 'loss_curves.png'plt.savefig(loss_filename)plt.show()return metrics_filename, loss_filename# Metrics to plot
metrics_info = [('metrics/precision', 'Precision'),('metrics/recall', 'Recall'),('metrics/mAP_0.5', 'mAP at IoU=0.5'),('metrics/mAP_0.5:0.95', 'mAP for IoU Range 0.5-0.95')
]# Loss to plot
loss_info = [('train/box_loss', 'Training Box Loss'),('train/cls_loss', 'Training Classification Loss'),('train/obj_loss', 'Training OBJ Loss'),('val/box_loss', 'Validation Box Loss'),('val/cls_loss', 'Validation Classification Loss'),('val/obj_loss', 'Validation obj Loss')
]# Plot the metrics and loss from multiple experiments
metrics_filename, loss_filename = plot_metrics_and_loss(experiment_names=['exp40', 'exp38'],metrics_info=metrics_info,loss_info=loss_info,metrics_subplot_layout=(2, 2),loss_subplot_layout=(2, 3)
)


三、使用讲解 

使用方式非常简单,我们首先创建一个文件,将核心代码粘贴进去,其中experiment_names这个参数就代表我们的每个训练结果的名字, 我们只需要修改这个即可,我这里就是五个结果进行对比,修改完成之后大家运行该文件即可。

五、热力图代码 

使用方式我会单独更一篇,这个热力图代码的进阶版,这里只是先放一下。 

import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter('ignore')
import torch, yaml, cv2, os, shutil
import numpy as np
np.random.seed(0)
import matplotlib.pyplot as plt
from tqdm import trange
from PIL import Image
from ultralytics.nn.tasks import DetectionModel as Model
from ultralytics.utils.torch_utils import intersect_dicts
from ultralytics.utils.ops import xywh2xyxy
from pytorch_grad_cam import GradCAMPlusPlus, GradCAM, XGradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradientsdef letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):# Resize and pad image while meeting stride-multiple constraintsshape = im.shape[:2]  # current shape [height, width]if isinstance(new_shape, int):new_shape = (new_shape, new_shape)# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])if not scaleup:  # only scale down, do not scale up (for better val mAP)r = min(r, 1.0)# Compute paddingratio = r, r  # width, height ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingif auto:  # minimum rectangledw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh paddingelif scaleFill:  # stretchdw, dh = 0.0, 0.0new_unpad = (new_shape[1], new_shape[0])ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratiosdw /= 2  # divide padding into 2 sidesdh /= 2if shape[::-1] != new_unpad:  # resizeim = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add borderreturn im, ratio, (dw, dh)class yolov8_heatmap:def __init__(self, weight, cfg, device, method, layer, backward_type, conf_threshold, ratio):device = torch.device(device)ckpt = torch.load(weight)model_names = ckpt['model'].namescsd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32model = Model(cfg, ch=3, nc=len(model_names)).to(device)csd = intersect_dicts(csd, model.state_dict(), exclude=['anchor'])  # intersectmodel.load_state_dict(csd, strict=False)  # loadmodel.eval()print(f'Transferred {len(csd)}/{len(model.state_dict())} items')target_layers = [eval(layer)]method = eval(method)colors = np.random.uniform(0, 255, size=(len(model_names), 3)).astype(np.int)self.__dict__.update(locals())def post_process(self, result):logits_ = result[:, 4:]boxes_ = result[:, :4]sorted, indices = torch.sort(logits_.max(1)[0], descending=True)return torch.transpose(logits_[0], dim0=0, dim1=1)[indices[0]], torch.transpose(boxes_[0], dim0=0, dim1=1)[indices[0]], xywh2xyxy(torch.transpose(boxes_[0], dim0=0, dim1=1)[indices[0]]).cpu().detach().numpy()def draw_detections(self, box, color, name, img):xmin, ymin, xmax, ymax = list(map(int, list(box)))cv2.rectangle(img, (xmin, ymin), (xmax, ymax), tuple(int(x) for x in color), 2)cv2.putText(img, str(name), (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.8, tuple(int(x) for x in color), 2, lineType=cv2.LINE_AA)return imgdef __call__(self, img_path, save_path):# remove dir if existif os.path.exists(save_path):shutil.rmtree(save_path)# make dir if not existos.makedirs(save_path, exist_ok=True)# img processimg = cv2.imread(img_path)img = letterbox(img)[0]img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)img = np.float32(img) / 255.0tensor = torch.from_numpy(np.transpose(img, axes=[2, 0, 1])).unsqueeze(0).to(self.device)# init ActivationsAndGradientsgrads = ActivationsAndGradients(self.model, self.target_layers, reshape_transform=None)# get ActivationsAndResultresult = grads(tensor)activations = grads.activations[0].cpu().detach().numpy()# postprocess to yolo outputpost_result, pre_post_boxes, post_boxes = self.post_process(result[0])for i in trange(int(post_result.size(0) * self.ratio)):if float(post_result[i].max()) < self.conf_threshold:breakself.model.zero_grad()# get max probability for this predictionif self.backward_type == 'class' or self.backward_type == 'all':score = post_result[i].max()score.backward(retain_graph=True)if self.backward_type == 'box' or self.backward_type == 'all':for j in range(4):score = pre_post_boxes[i, j]score.backward(retain_graph=True)# process heatmapif self.backward_type == 'class':gradients = grads.gradients[0]elif self.backward_type == 'box':gradients = grads.gradients[0] + grads.gradients[1] + grads.gradients[2] + grads.gradients[3]else:gradients = grads.gradients[0] + grads.gradients[1] + grads.gradients[2] + grads.gradients[3] + grads.gradients[4]b, k, u, v = gradients.size()weights = self.method.get_cam_weights(self.method, None, None, None, activations, gradients.detach().numpy())weights = weights.reshape((b, k, 1, 1))saliency_map = np.sum(weights * activations, axis=1)saliency_map = np.squeeze(np.maximum(saliency_map, 0))saliency_map = cv2.resize(saliency_map, (tensor.size(3), tensor.size(2)))saliency_map_min, saliency_map_max = saliency_map.min(), saliency_map.max()if (saliency_map_max - saliency_map_min) == 0:continuesaliency_map = (saliency_map - saliency_map_min) / (saliency_map_max - saliency_map_min)# add heatmap and box to imagecam_image = show_cam_on_image(img.copy(), saliency_map, use_rgb=True)cam_image = self.draw_detections(post_boxes[i], self.colors[int(post_result[i, :].argmax())], f'{self.model_names[int(post_result[i, :].argmax())]} {float(post_result[i].max()):.2f}', cam_image)cam_image = Image.fromarray(cam_image)cam_image.save(f'{save_path}/{i}.png')def get_params():params = {'weight': 'yolov8n.pt','cfg': 'ultralytics/cfg/models/v8/yolov8n.yaml','device': 'cuda:0','method': 'GradCAM', # GradCAMPlusPlus, GradCAM, XGradCAM'layer': 'model.model[9]','backward_type': 'all', # class, box, all'conf_threshold': 0.6, # 0.6'ratio': 0.02 # 0.02-0.1}return paramsif __name__ == '__main__':model = yolov8_heatmap(**get_params())model(r'ultralytics/assets/bus.jpg', 'result')


四、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv9改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

这篇关于YOLOv9训练损失、精度、mAP绘图功能 | 支持多结果对比,多结果绘在一个图片(消融实验、科研必备)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932975

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

SpringBoot+Vue3整合SSE实现实时消息推送功能

《SpringBoot+Vue3整合SSE实现实时消息推送功能》在日常开发中,我们经常需要实现实时消息推送的功能,这篇文章将基于SpringBoot和Vue3来简单实现一个入门级的例子,下面小编就和大... 目录前言先大概介绍下SSE后端实现(SpringBoot)前端实现(vue3)1. 数据类型定义2.

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

SpringBoot整合Apache Spark实现一个简单的数据分析功能

《SpringBoot整合ApacheSpark实现一个简单的数据分析功能》ApacheSpark是一个开源的大数据处理框架,它提供了丰富的功能和API,用于分布式数据处理、数据分析和机器学习等任务... 目录第一步、添加android依赖第二步、编写配置类第三步、编写控制类启动项目并测试总结ApacheS

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Python实现繁体转简体功能的三种方案

《Python实现繁体转简体功能的三种方案》在中文信息处理中,繁体字与简体字的转换是一个常见需求,无论是处理港澳台地区的文本数据,还是开发面向不同中文用户群体的应用,繁简转换都是不可或缺的功能,本文将... 目录前言为什么需要繁简转换?python实现方案方案一:使用opencc库方案二:使用zhconv库

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务

CPython与PyPy解释器架构的性能测试结果对比

《CPython与PyPy解释器架构的性能测试结果对比》Python解释器的选择对应用程序性能有着决定性影响,CPython以其稳定性和丰富的生态系统著称;而PyPy作为基于JIT(即时编译)技术的替... 目录引言python解释器架构概述CPython架构解析PyPy架构解析架构对比可视化性能基准测试测