python计算precision@k、recall@k和f1_score@k

2024-04-24 20:38

本文主要是介绍python计算precision@k、recall@k和f1_score@k,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

sklearn.metrics中的评估函数只能对同一样本的单个预测结果进行评估,如下所示:

from sklearn.metrics import classification_reporty_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]
y_pred = [0, 2, 4, 5, 2, 3, 1, 1, 4, 2]print(classification_report(y_true, y_pred))

而我们经常会遇到需要对同一样本的top-k个预测结果进行评估的情况,此时算法针对单个样本的预测结果是一个按可能性排序的列表,如下所示:

y_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]
y_pred = [[0, 0, 2, 1, 5],[2, 2, 4, 1, 4],[4, 5, 1, 3, 5],[5, 4, 2, 4, 3],[2, 0, 0, 2, 3],[3, 3, 4, 1, 4],[1, 1, 0, 1, 2],[1, 4, 4, 2, 4],[4, 1, 3, 3, 5],[2, 4, 2, 2, 3]]

针对以上这种情况,我们要如何评估算法的好坏呢?我们需要precision@k、recall@k和f1_score@k等指标,下面给出计算这些指标的函数及示例。

from _tkinter import _flatten# 统计所有的类别
def get_unique_labels(y_true, y_pred):y_true_set = set(y_true)y_pred_set = set(_flatten(y_pred))unique_label_set = y_true_set | y_pred_setunique_label = list(unique_label_set)return unique_label# y_true: 1d-list-like
# y_pred: 2d-list-like
# k:针对top-k各结果进行计算(k <= y_pred.shape[1])
def precision_recall_fscore_k(y_trues, y_preds, k=3, digs=2):# 取每个样本的top-k个预测结果!y_preds = [pred[:k] for pred in y_preds]unique_labels = get_unique_labels(y_trues, y_preds)num_classes = len(unique_labels)# 计算每个类别的precision、recall、f1-score、supportresults_dict = {}results = ''for label in unique_labels:current_label_result = []# TP + FNtp_fn = y_trues.count(label)# TP + FPtp_fp = 0for y_pred in y_preds:if label in y_pred:tp_fp += 1# TPtp = 0for i in range(len(y_trues)):if y_trues[i] == label and label in y_preds[i]:tp += 1support = tp_fntry:precision = round(tp/tp_fp, digs)recall = round(tp/tp_fn, digs)f1_score = round(2*(precision * recall) / (precision + recall), digs)except ZeroDivisionError:precision = 0recall = 0f1_score = 0current_label_result.append(precision)current_label_result.append(recall)current_label_result.append(f1_score)current_label_result.append(support)# 输出第一行results_dict[str(label)] = current_label_resulttitle = '\t' + 'precision@' + str(k) + '\t' + 'recall@' + str(k) + '\t' + 'f1_score@' + str(k) + '\t' + 'support' + '\n'results += titlefor k, v in sorted(results_dict.items()):current_line = str(k) + '\t' + str(v[0]) + '\t' + str(v[1]) + '\t' + str(v[2]) + '\t' + str(v[3]) + '\n'results += current_linesums = len(y_trues)# 注意macro avg和weighted avg计算方式的不同macro_avg_results = [(v[0], v[1], v[2]) for k, v in sorted(results_dict.items())]weighted_avg_results = [(v[0]*v[3], v[1]*v[3], v[2]*v[3]) for k, v in sorted(results_dict.items())]# 计算macro avgmacro_precision = 0macro_recall = 0macro_f1_score = 0for macro_avg_result in macro_avg_results:macro_precision += macro_avg_result[0]macro_recall += macro_avg_result[1]macro_f1_score += macro_avg_result[2]macro_precision /= num_classesmacro_recall /= num_classesmacro_f1_score /= num_classes# 计算weighted avgweighted_precision = 0weighted_recall = 0weighted_f1_score = 0for weighted_avg_result in weighted_avg_results:weighted_precision += weighted_avg_result[0]weighted_recall += weighted_avg_result[1]weighted_f1_score += weighted_avg_result[2]weighted_precision /= sumsweighted_recall /= sumsweighted_f1_score /= sumsmacro_avg_line = 'macro avg' + '\t' + str(round(macro_precision, digs)) + '\t' + str(round(macro_recall, digs)) + '\t' + str(round(macro_f1_score, digs)) + '\t' + str(sums) +'\n'weighted_avg_line = 'weighted avg' + '\t' + str(round(weighted_precision, digs)) + '\t' + str(round(weighted_recall, digs)) + '\t' + str(round(weighted_f1_score, digs)) + '\t' + str(sums)results += macro_avg_lineresults += weighted_avg_linereturn resultsif __name__ == '__main__':y_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]y_pred = [[0, 3, 2, 1, 5],[2, 0, 4, 1, 3],[4, 5, 1, 3, 0],[5, 4, 2, 0, 3],[2, 0, 1, 3, 5],[3, 0, 4, 1, 2],[1, 0, 4, 2, 3],[1, 4, 5, 2, 3],[4, 1, 3, 2, 0],[2, 0, 1, 3, 4]]res = precision_recall_fscore_k(y_true, y_pred, k=5, digs=2)print(res)

我们分别取k=1、k=2、k=3、k=4和k=5,看一下效果。

k=1时:

k=3时:

k=5时:

我们进一步看一下随着k值的增大,precision@k、recall@k和f1_score@k值的变化:

写作过程参考了

https://blog.csdn.net/dipizhong7224/article/details/104579159

https://blog.csdn.net/ybdesire/article/details/96507733

这篇关于python计算precision@k、recall@k和f1_score@k的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932786

相关文章

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一