python计算precision@k、recall@k和f1_score@k

2024-04-24 20:38

本文主要是介绍python计算precision@k、recall@k和f1_score@k,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

sklearn.metrics中的评估函数只能对同一样本的单个预测结果进行评估,如下所示:

from sklearn.metrics import classification_reporty_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]
y_pred = [0, 2, 4, 5, 2, 3, 1, 1, 4, 2]print(classification_report(y_true, y_pred))

而我们经常会遇到需要对同一样本的top-k个预测结果进行评估的情况,此时算法针对单个样本的预测结果是一个按可能性排序的列表,如下所示:

y_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]
y_pred = [[0, 0, 2, 1, 5],[2, 2, 4, 1, 4],[4, 5, 1, 3, 5],[5, 4, 2, 4, 3],[2, 0, 0, 2, 3],[3, 3, 4, 1, 4],[1, 1, 0, 1, 2],[1, 4, 4, 2, 4],[4, 1, 3, 3, 5],[2, 4, 2, 2, 3]]

针对以上这种情况,我们要如何评估算法的好坏呢?我们需要precision@k、recall@k和f1_score@k等指标,下面给出计算这些指标的函数及示例。

from _tkinter import _flatten# 统计所有的类别
def get_unique_labels(y_true, y_pred):y_true_set = set(y_true)y_pred_set = set(_flatten(y_pred))unique_label_set = y_true_set | y_pred_setunique_label = list(unique_label_set)return unique_label# y_true: 1d-list-like
# y_pred: 2d-list-like
# k:针对top-k各结果进行计算(k <= y_pred.shape[1])
def precision_recall_fscore_k(y_trues, y_preds, k=3, digs=2):# 取每个样本的top-k个预测结果!y_preds = [pred[:k] for pred in y_preds]unique_labels = get_unique_labels(y_trues, y_preds)num_classes = len(unique_labels)# 计算每个类别的precision、recall、f1-score、supportresults_dict = {}results = ''for label in unique_labels:current_label_result = []# TP + FNtp_fn = y_trues.count(label)# TP + FPtp_fp = 0for y_pred in y_preds:if label in y_pred:tp_fp += 1# TPtp = 0for i in range(len(y_trues)):if y_trues[i] == label and label in y_preds[i]:tp += 1support = tp_fntry:precision = round(tp/tp_fp, digs)recall = round(tp/tp_fn, digs)f1_score = round(2*(precision * recall) / (precision + recall), digs)except ZeroDivisionError:precision = 0recall = 0f1_score = 0current_label_result.append(precision)current_label_result.append(recall)current_label_result.append(f1_score)current_label_result.append(support)# 输出第一行results_dict[str(label)] = current_label_resulttitle = '\t' + 'precision@' + str(k) + '\t' + 'recall@' + str(k) + '\t' + 'f1_score@' + str(k) + '\t' + 'support' + '\n'results += titlefor k, v in sorted(results_dict.items()):current_line = str(k) + '\t' + str(v[0]) + '\t' + str(v[1]) + '\t' + str(v[2]) + '\t' + str(v[3]) + '\n'results += current_linesums = len(y_trues)# 注意macro avg和weighted avg计算方式的不同macro_avg_results = [(v[0], v[1], v[2]) for k, v in sorted(results_dict.items())]weighted_avg_results = [(v[0]*v[3], v[1]*v[3], v[2]*v[3]) for k, v in sorted(results_dict.items())]# 计算macro avgmacro_precision = 0macro_recall = 0macro_f1_score = 0for macro_avg_result in macro_avg_results:macro_precision += macro_avg_result[0]macro_recall += macro_avg_result[1]macro_f1_score += macro_avg_result[2]macro_precision /= num_classesmacro_recall /= num_classesmacro_f1_score /= num_classes# 计算weighted avgweighted_precision = 0weighted_recall = 0weighted_f1_score = 0for weighted_avg_result in weighted_avg_results:weighted_precision += weighted_avg_result[0]weighted_recall += weighted_avg_result[1]weighted_f1_score += weighted_avg_result[2]weighted_precision /= sumsweighted_recall /= sumsweighted_f1_score /= sumsmacro_avg_line = 'macro avg' + '\t' + str(round(macro_precision, digs)) + '\t' + str(round(macro_recall, digs)) + '\t' + str(round(macro_f1_score, digs)) + '\t' + str(sums) +'\n'weighted_avg_line = 'weighted avg' + '\t' + str(round(weighted_precision, digs)) + '\t' + str(round(weighted_recall, digs)) + '\t' + str(round(weighted_f1_score, digs)) + '\t' + str(sums)results += macro_avg_lineresults += weighted_avg_linereturn resultsif __name__ == '__main__':y_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]y_pred = [[0, 3, 2, 1, 5],[2, 0, 4, 1, 3],[4, 5, 1, 3, 0],[5, 4, 2, 0, 3],[2, 0, 1, 3, 5],[3, 0, 4, 1, 2],[1, 0, 4, 2, 3],[1, 4, 5, 2, 3],[4, 1, 3, 2, 0],[2, 0, 1, 3, 4]]res = precision_recall_fscore_k(y_true, y_pred, k=5, digs=2)print(res)

我们分别取k=1、k=2、k=3、k=4和k=5,看一下效果。

k=1时:

k=3时:

k=5时:

我们进一步看一下随着k值的增大,precision@k、recall@k和f1_score@k值的变化:

写作过程参考了

https://blog.csdn.net/dipizhong7224/article/details/104579159

https://blog.csdn.net/ybdesire/article/details/96507733

这篇关于python计算precision@k、recall@k和f1_score@k的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932786

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合