python计算precision@k、recall@k和f1_score@k

2024-04-24 20:38

本文主要是介绍python计算precision@k、recall@k和f1_score@k,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

sklearn.metrics中的评估函数只能对同一样本的单个预测结果进行评估,如下所示:

from sklearn.metrics import classification_reporty_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]
y_pred = [0, 2, 4, 5, 2, 3, 1, 1, 4, 2]print(classification_report(y_true, y_pred))

而我们经常会遇到需要对同一样本的top-k个预测结果进行评估的情况,此时算法针对单个样本的预测结果是一个按可能性排序的列表,如下所示:

y_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]
y_pred = [[0, 0, 2, 1, 5],[2, 2, 4, 1, 4],[4, 5, 1, 3, 5],[5, 4, 2, 4, 3],[2, 0, 0, 2, 3],[3, 3, 4, 1, 4],[1, 1, 0, 1, 2],[1, 4, 4, 2, 4],[4, 1, 3, 3, 5],[2, 4, 2, 2, 3]]

针对以上这种情况,我们要如何评估算法的好坏呢?我们需要precision@k、recall@k和f1_score@k等指标,下面给出计算这些指标的函数及示例。

from _tkinter import _flatten# 统计所有的类别
def get_unique_labels(y_true, y_pred):y_true_set = set(y_true)y_pred_set = set(_flatten(y_pred))unique_label_set = y_true_set | y_pred_setunique_label = list(unique_label_set)return unique_label# y_true: 1d-list-like
# y_pred: 2d-list-like
# k:针对top-k各结果进行计算(k <= y_pred.shape[1])
def precision_recall_fscore_k(y_trues, y_preds, k=3, digs=2):# 取每个样本的top-k个预测结果!y_preds = [pred[:k] for pred in y_preds]unique_labels = get_unique_labels(y_trues, y_preds)num_classes = len(unique_labels)# 计算每个类别的precision、recall、f1-score、supportresults_dict = {}results = ''for label in unique_labels:current_label_result = []# TP + FNtp_fn = y_trues.count(label)# TP + FPtp_fp = 0for y_pred in y_preds:if label in y_pred:tp_fp += 1# TPtp = 0for i in range(len(y_trues)):if y_trues[i] == label and label in y_preds[i]:tp += 1support = tp_fntry:precision = round(tp/tp_fp, digs)recall = round(tp/tp_fn, digs)f1_score = round(2*(precision * recall) / (precision + recall), digs)except ZeroDivisionError:precision = 0recall = 0f1_score = 0current_label_result.append(precision)current_label_result.append(recall)current_label_result.append(f1_score)current_label_result.append(support)# 输出第一行results_dict[str(label)] = current_label_resulttitle = '\t' + 'precision@' + str(k) + '\t' + 'recall@' + str(k) + '\t' + 'f1_score@' + str(k) + '\t' + 'support' + '\n'results += titlefor k, v in sorted(results_dict.items()):current_line = str(k) + '\t' + str(v[0]) + '\t' + str(v[1]) + '\t' + str(v[2]) + '\t' + str(v[3]) + '\n'results += current_linesums = len(y_trues)# 注意macro avg和weighted avg计算方式的不同macro_avg_results = [(v[0], v[1], v[2]) for k, v in sorted(results_dict.items())]weighted_avg_results = [(v[0]*v[3], v[1]*v[3], v[2]*v[3]) for k, v in sorted(results_dict.items())]# 计算macro avgmacro_precision = 0macro_recall = 0macro_f1_score = 0for macro_avg_result in macro_avg_results:macro_precision += macro_avg_result[0]macro_recall += macro_avg_result[1]macro_f1_score += macro_avg_result[2]macro_precision /= num_classesmacro_recall /= num_classesmacro_f1_score /= num_classes# 计算weighted avgweighted_precision = 0weighted_recall = 0weighted_f1_score = 0for weighted_avg_result in weighted_avg_results:weighted_precision += weighted_avg_result[0]weighted_recall += weighted_avg_result[1]weighted_f1_score += weighted_avg_result[2]weighted_precision /= sumsweighted_recall /= sumsweighted_f1_score /= sumsmacro_avg_line = 'macro avg' + '\t' + str(round(macro_precision, digs)) + '\t' + str(round(macro_recall, digs)) + '\t' + str(round(macro_f1_score, digs)) + '\t' + str(sums) +'\n'weighted_avg_line = 'weighted avg' + '\t' + str(round(weighted_precision, digs)) + '\t' + str(round(weighted_recall, digs)) + '\t' + str(round(weighted_f1_score, digs)) + '\t' + str(sums)results += macro_avg_lineresults += weighted_avg_linereturn resultsif __name__ == '__main__':y_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]y_pred = [[0, 3, 2, 1, 5],[2, 0, 4, 1, 3],[4, 5, 1, 3, 0],[5, 4, 2, 0, 3],[2, 0, 1, 3, 5],[3, 0, 4, 1, 2],[1, 0, 4, 2, 3],[1, 4, 5, 2, 3],[4, 1, 3, 2, 0],[2, 0, 1, 3, 4]]res = precision_recall_fscore_k(y_true, y_pred, k=5, digs=2)print(res)

我们分别取k=1、k=2、k=3、k=4和k=5,看一下效果。

k=1时:

k=3时:

k=5时:

我们进一步看一下随着k值的增大,precision@k、recall@k和f1_score@k值的变化:

写作过程参考了

https://blog.csdn.net/dipizhong7224/article/details/104579159

https://blog.csdn.net/ybdesire/article/details/96507733

这篇关于python计算precision@k、recall@k和f1_score@k的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932786

相关文章

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核