深度学习论文: MobileNetV4 - Universal Models for the Mobile Ecosystem及其PyTorch实现

本文主要是介绍深度学习论文: MobileNetV4 - Universal Models for the Mobile Ecosystem及其PyTorch实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习论文: MobileNetV4 - Universal Models for the Mobile Ecosystem及其PyTorch实现
MobileNetV4 - Universal Models for the Mobile Ecosystem
PDF: https://arxiv.org/pdf/2404.10518.pdf
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks

1 概述

专为移动设备设计的高效架构MobileNetV4(MNv4)核心在于引入了通用倒置瓶颈(UIB)搜索块和Mobile MQA注意力块,前者融合了多种技术,后者针对移动加速器优化,可大幅提升速度。同时采用了优化的神经架构搜索(NAS)方案。这一系列创新使得MNv4模型在多种设备上实现帕累托最优。此外,还引入了一种新的知识蒸馏技术,提高了模型的准确性。最终,MNv4-Hybrid-Large模型在ImageNet-1K上达到87%的准确率,同时在Pixel 8 EdgeTPU上的运行时间极短。

在这里插入图片描述

2 Universal Inverted Bottlenecks

通用倒瓶颈(UIB)块,其设计简洁而高效,如图所展示,它在传统的倒瓶颈块中巧妙地融入了两个可选的深度卷积(DW)操作。这两个DW分别置于扩展层之前以及扩展层和投影层之间,它们的存在与否是通过神经网络架构搜索(NAS)优化过程精心确定的,从而生成出性能卓越的全新架构。
在这里插入图片描述
尽管这种改动看似简单,但UIB块却成功地将多个现有的关键组件融为一体,包括经典的IB块、前沿的ConvNext块以及ViT中的FFN块。这种融合不仅保留了各组件的优势,还通过互补效应进一步提升了整体性能。

更值得一提的是,UIB还引入了一种革新的变体——额外的深度卷积IB(ExtraDW)块。这一创新举措为UIB块注入了新的活力,使其在保持高效的同时,进一步提升了模型的表达能力。

在网络的每个阶段,UIB都展现了出色的灵活性,以达成以下三个关键目标:

  • 即时实现空间和通道混合的权衡,优化模型的表达能力;
  • 按需扩大感受野,提升模型对上下文信息的捕获能力;
  • 最大化计算利用率,确保资源的高效利用。

3 Mobile MQA

专门为加速器优化的Mobile MQA注意力块,该块能够显著提升推理速度,达到超过39%的效率提升。

MQA
MQA通过共享键和值简化了多查询注意力机制。与MHSA相比,MQA在保持高质量的同时,实现了显著加速和参数减少。
在这里插入图片描述
Spatial Reduction Attention (SRA)
受到MQA非对称计算的启发,进一步将空间缩减注意力(SRA)融入优化后的MQA模块中,以降低键和值的分辨率,同时保持高分辨率的查询。此外使用步长为2的3x3深度卷积替代了AvgPooling,为模型容量的提升提供了一种高效且经济的方案。
在这里插入图片描述
通过引入非对称空间下采样,我们可以在保持极小精度损失(-0.06%)的同时,实现超过20%的效率提升。

Mobile MQA
在这里插入图片描述
其中 SR代表空间减少,即步长为2的深度卷积(DW),或者在未使用空间减少的情况下表示恒等函数。

4 Design of MNv4 Models

为了有效地实例化UIB块,作者采用了定制的TuNAS方法,该方法针对性能改进进行了优化。为克服TuNAS因参数共享而产生的偏见,作者实施了一个两阶段搜索策略。这一策略旨在解决UIB深度层与其他搜索选项之间参数数量差异的问题,确保搜索结果的公正性和有效性。

在搜索过程中,作者首先进行了粗粒度搜索,集中于确定最佳的滤波器大小,同时保持其他参数如扩展因子(设为默认值4)和深度可分核(使用3x3)不变。这一阶段的目的是快速筛选出可能的滤波器大小范围。

随后,基于粗粒度搜索的结果,作者进行了细粒度搜索。在这一阶段,作者进一步探索UIB的两个深度可分层的配置,包括它们的存在与否以及核大小(3x3或5x5)的选择。同时,扩展因子仍然保持为4,以控制变量并更精确地评估不同配置的性能。

通过这种两阶段的搜索策略,作者成功地确定了UIB块的最优配置,既考虑了性能又平衡了参数数量,为UIB的有效实例化提供了有力支持。

在这里插入图片描述
MNv4模型的架构细节:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5 Results

ImageNet classification
在这里插入图片描述
COCO Object Detection
在这里插入图片描述

这篇关于深度学习论文: MobileNetV4 - Universal Models for the Mobile Ecosystem及其PyTorch实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931881

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount