每周一算法:多起点最短路

2024-04-24 13:12
文章标签 算法 起点 短路 每周

本文主要是介绍每周一算法:多起点最短路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

有一天,琪琪想乘坐公交车去拜访她的一位朋友。由于琪琪非常容易晕车,所以她想尽快到达朋友家。

现在给定你一张城市交通路线图,上面包含城市的公交站台以及公交线路的具体分布。

已知城市中共包含 n n n个车站(编号 1 ∼ n 1\sim n 1n),以及 m m m 条公交线路。

每条公交线路都是单向的,从一个车站出发直接到达另一个车站,两个车站之间可能存在多条公交线路。

琪琪的朋友住在 s s s号车站附近。琪琪可以在任何车站选择换乘其它公共汽车。

请找出琪琪到达她的朋友家(附近的公交车站)需要花费的最少时间。

输入格式

输入包含多组测试数据。

每组测试数据第一行包含三个整数 n , m , s n,m,s n,m,s,分别表示车站数量,公交线路数量以及朋友家附近车站的编号。

接下来 m m m 行,每行包含三个整数 p , q , t p,q,t p,q,t,表示存在一条线路从车站 p p p 到达车站 q q q,用时为 t t t

接下来一行,包含一个整数 w w w,表示琪琪家附近共有 w w w 个车站,她可以在这 w w w 个车站中选择一个车站作为始发站。

再一行,包含 w w w 个整数,表示琪琪家附近的 w w w 个车站的编号。

输出格式

每个测试数据输出一个整数作为结果,表示所需花费的最少时间。

如果无法达到朋友家的车站,则输出 -1

每个结果占一行。

样例 #1

样例输入 #1

5 8 5
1 2 2
1 5 3
1 3 4
2 4 7
2 5 6
2 3 5
3 5 1
4 5 1
2
2 3
4 3 4
1 2 3
1 3 4
2 3 2
1
1

样例输出 #1

1
-1

提示

【数据范围】

n ≤ 1000 , m ≤ 20000 n≤1000,m≤20000 n1000,m20000,
1 ≤ s ≤ n 1≤s≤n 1sn,
0 < w < n 0<w<n 0<w<n,
0 < t ≤ 1000 0<t≤1000 0<t1000

算法思想一:反向建边

根据题目描述,琪琪家附近共有 w w w 个车站,可以在任何车站选择换乘其它公共汽车,目标是到达 s s s号车站附近的朋友家。也就是说起点可以有多个,终点只有 1 1 1个,求从多个起点出发到达终点的最短路。

基于上述分析,可以反向建边,利用单源最短路算法,例如「Dijkstra」或者「SPFA」,求终点到所有起点的最短路,然后打擂台求一个最小值即可。

时间复杂度

这里使用「SPFA」求最短路,其平均时间复杂度为 O ( k n ) O(kn) O(kn) k k k是一个很小的常数,最坏情况下是 O ( n m ) O(nm) O(nm);一共有 T T T组测试样例,因此总的时间复杂度为 O ( T × k n ) O(T\times kn) O(T×kn)

代码实现

#include <bits/stdc++.h>
using namespace std;
const int N = 1005, M = 20005, INF = 0x3f3f3f3f; 
int h[N], e[M], w[M], ne[M], idx;
int n, m, s, t, p[N], dis[N], q[N], st[N];
void add(int a, int b, int c)
{e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}
void spfa()
{memset(dis, 0x3f, sizeof dis);int hh = 0, tt = 0;dis[s] = 0; st[s] = 1; q[tt ++] = s;while(hh != tt) //循环队列{int u = q[hh ++];if(hh == N) hh = 0; //循环队列st[u] = 0;for(int i = h[u]; ~ i; i = ne[i]){int v = e[i];if(dis[v] > dis[u] + w[i]){dis[v] = dis[u] + w[i];if(!st[v]){st[v] = 1; q[tt ++] = v;if(tt == N) tt = 0; //循环队列}}}}
}int main()
{while(scanf("%d%d%d", &n, &m, &s) != -1){memset(h, -1, sizeof h);idx = 0; //多组测试样例,需要重置idxfor(int i = 0; i < m; i ++){int a, b, c;scanf("%d%d%d", &a, &b, &c);add(b, a, c); //反向建边}scanf("%d", &t);for(int i = 0; i < t; i ++) scanf("%d", &p[i]);spfa();int ans = INF;for(int i = 0; i < t; i ++) ans = min(ans, dis[p[i]]);if(ans == INF) puts("-1");else printf("%d\n", ans);}    return 0;
}

算法思想二:虚拟源点

反向建边的思想可以解决从多个起点出发到达终点的最短路问题,但是当终点也有多个时,则无法处理。此时,除了「Floyd」算法之外,还可以使用虚拟源点的思想来处理。

基本思想就是设置一个虚拟源点从该源点到每个起点建立一条权重为0的边。如下图所示:
在这里插入图片描述
这样,对于每条从起点到终点的最短路,都可以对应一条从虚拟源点出发,经过起点到达终点的最短路。这样就可以利用单源最短路算法,例如「Dijkstra」或者「SPFA」,直接求虚拟源点到终点的最短路即可。

代码实现

#include <bits/stdc++.h>
using namespace std;
//注意,由于引入了虚拟节点,边数要相应增加
const int N = 1005, M = 21005, INF = 0x3f3f3f3f; 
int h[N], e[M], w[M], ne[M], idx;
int n, m, s, t, q[N], dis[N], st[N];
void add(int a, int b, int c)
{e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}int spfa()
{memset(dis, 0x3f, sizeof dis);int hh = 0, tt = 0;dis[0] = 0; st[0] = 1; q[tt ++] = 0; //将虚拟源点0加入队列while(hh != tt) //循环队列{int u = q[hh ++];if(hh == N) hh = 0; //循环队列st[u] = 0;for(int i = h[u]; ~ i; i = ne[i]){int v = e[i];if(dis[v] > dis[u] + w[i]){dis[v] = dis[u] + w[i];if(!st[v]){st[v] = 1; q[tt ++] = v;if(tt == N) tt = 0; //循环队列}}}}if(dis[s] == INF) return -1;else return dis[s];
}int main()
{while(scanf("%d%d%d", &n, &m, &s) != -1){memset(h, -1, sizeof h);idx = 0; //多组测试样例,需要重置idxfor(int i = 0; i < m; i ++){int a, b, c;scanf("%d%d%d", &a, &b, &c);add(a, b, c); //正向建边}scanf("%d", &t); //输入起点个数for(int i = 0; i < t; i ++) {int s;scanf("%d", &s);add(0, s, 0); //从虚拟源点0建一条权重为0、指向起点s的边}printf("%d\n", spfa());}return 0;
}

这篇关于每周一算法:多起点最短路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931854

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个