mmdetection - anchor-based方法训练流程解析

2024-04-24 11:08

本文主要是介绍mmdetection - anchor-based方法训练流程解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

训练流程图
在这里插入图片描述
最终会创建一个runner,然后调用runner.run时,实际会根据workflow中是train还是val,调用runner.py下的train和val函数。
batch_processor

def batch_processor(model, data, train_mode):# 这里的train_mode实际没用到losses = model(**data)loss, log_vars = parse_losses(losses)outputs = dict(loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))return outputs

mmcv/runner/runner.py
train

def train(self, data_loader, **kwargs):self.model.train()self.mode = 'train'self.data_loader = data_loaderself._max_iters = self._max_epochs * len(data_loader)self.call_hook('before_train_epoch')for i, data_batch in enumerate(data_loader):self._inner_iter = iself.call_hook('before_train_iter')outputs = self.batch_processor(self.model, data_batch, train_mode=True, **kwargs)if not isinstance(outputs, dict):raise TypeError('batch_processor() must return a dict')if 'log_vars' in outputs:self.log_buffer.update(outputs['log_vars'],outputs['num_samples'])self.outputs = outputsself.call_hook('after_train_iter')self._iter += 1self.call_hook('after_train_epoch')self._epoch += 1

val

def val(self, data_loader, **kwargs):self.model.eval()self.mode = 'val'self.data_loader = data_loaderself.call_hook('before_val_epoch')for i, data_batch in enumerate(data_loader):self._inner_iter = iself.call_hook('before_val_iter')with torch.no_grad():outputs = self.batch_processor(self.model, data_batch, train_mode=False, **kwargs)if not isinstance(outputs, dict):raise TypeError('batch_processor() must return a dict')if 'log_vars' in outputs:self.log_buffer.update(outputs['log_vars'],outputs['num_samples'])self.outputs = outputsself.call_hook('after_val_iter')self.call_hook('after_val_epoch')

validate目前只在_dist_train中有用到

训练时,实际调用:losses = model(**data),验证时,实际调用hook,运行:

with torch.no_grad():result = runner.model(return_loss=False, rescale=True, **data_gpu)

其中,TwoStageDetector和SingleStageDetector都继承了BaseDetector,在BaseDetector中,forward函数定义如下:

@auto_fp16(apply_to=('img', ))
def forward(self, img, img_meta, return_loss=True, **kwargs):if return_loss:return self.forward_train(img, img_meta, **kwargs)else:return self.forward_test(img, img_meta, **kwargs)

对于forward_test,其代码如下:

def forward_test(self, imgs, img_metas, **kwargs):for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]:if not isinstance(var, list):raise TypeError('{} must be a list, but got {}'.format(name, type(var)))num_augs = len(imgs)if num_augs != len(img_metas):raise ValueError('num of augmentations ({}) != num of image meta ({})'.format(len(imgs), len(img_metas)))# TODO: remove the restriction of imgs_per_gpu == 1 when preparedimgs_per_gpu = imgs[0].size(0)assert imgs_per_gpu == 1if num_augs == 1:return self.simple_test(imgs[0], img_metas[0], **kwargs)else:return self.aug_test(imgs, img_metas, **kwargs)

由上可以看出,子类需要写simple_test和aub_test函数。
对于一个检测模型(一阶或者二阶),在其class中,需要重写以下函数:

  • forward_train
  • simple_test
  • aug_test # 非必须

下面以retinanet举个例子,在retinanet的config文件中,model的type是RetinaNet,在mmdet/models/detectors/retinanet.py中,定义了RetinaNet,它的父类是SingleStageDetector,定义在mmdet/models/detectors/single_stage.py中,三个重要函数的代码如下:

def forward_train(self,img,img_metas,gt_bboxes,gt_labels,gt_bboxes_ignore=None):x = self.extract_feat(img)outs = self.bbox_head(x)loss_inputs = outs + (gt_bboxes, gt_labels, img_metas, self.train_cfg)losses = self.bbox_head.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)return lossesdef simple_test(self, img, img_meta, rescale=False):x = self.extract_feat(img)outs = self.bbox_head(x)bbox_inputs = outs + (img_meta, self.test_cfg, rescale)bbox_list = self.bbox_head.get_bboxes(*bbox_inputs)bbox_results = [bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes)for det_bboxes, det_labels in bbox_list]return bbox_results[0]def aug_test(self, imgs, img_metas, rescale=False):raise NotImplementedError

由上可知,计算loss的函数是在head中定义的,RetinaHead定义在mmdet/models/anchor_heads/retina_head.py中,RetinaHead三个关键函数的代码如下:

def _init_layers(self):self.relu = nn.ReLU(inplace=True)self.cls_convs = nn.ModuleList()self.reg_convs = nn.ModuleList()for i in range(self.stacked_convs):chn = self.in_channels if i == 0 else self.feat_channelsself.cls_convs.append(ConvModule(chn,self.feat_channels,3,stride=1,padding=1,conv_cfg=self.conv_cfg,norm_cfg=self.norm_cfg))self.reg_convs.append(ConvModule(chn,self.feat_channels,3,stride=1,padding=1,conv_cfg=self.conv_cfg,norm_cfg=self.norm_cfg))self.retina_cls = nn.Conv2d(self.feat_channels,self.num_anchors * self.cls_out_channels,3,padding=1)self.retina_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 3, padding=1)def init_weights(self):for m in self.cls_convs:normal_init(m.conv, std=0.01)for m in self.reg_convs:normal_init(m.conv, std=0.01)bias_cls = bias_init_with_prob(0.01)normal_init(self.retina_cls, std=0.01, bias=bias_cls)normal_init(self.retina_reg, std=0.01)def forward_single(self, x):cls_feat = xreg_feat = xfor cls_conv in self.cls_convs:cls_feat = cls_conv(cls_feat)for reg_conv in self.reg_convs:reg_feat = reg_conv(reg_feat)cls_score = self.retina_cls(cls_feat)bbox_pred = self.retina_reg(reg_feat)return cls_score, bbox_pred

其中,_init_layers创建head的结构,init_weights对conv的weight和bias做初始化,forward_single是经过head计算得到的分类和检测框预测结果。
forward
在具体的方法对应的head定义forward_single,最后由anchor_head.py中的forward函数进行组装。

from six.moves import map, zip
def multi_apply(func, *args, **kwargs):pfunc = partial(func, **kwargs) if kwargs else func # 将func的kwargs固定,返回该函数# 这里的*args=feats,调用forward_single对feats的元素依次跑前向map_results = map(pfunc, *args) # 得到[(stride1_cls,stride1_bbox,...), (stride2_cls,stride2_bbox, ...]return tuple(map(list, zip(*map_results)))# zip(*map_results) 得到 [(stride1_cls,stride2_cls,stride3_cls,...),(stride1_bbox,stride2_bbox,stride3_bbox,...)]# map(list, zip(*map_results)) 将(stride1_cls,stride2_cls,stride3_cls,...)变为[stride1_cls,stride2_cls,stride3_cls,...]# tuple之后,最后得到([stride1_cls,stride2_cls,stride3_cls,...],[stride1_bbox,stride2_bbox,stride3_bbox,...])def forward(self, feats):# 输入feats是一个list,长度为stride个数,其中元素为nchwreturn multi_apply(self.forward_single, feats)def forward_single(self, x):# 这里的x为feats中的某一个元素cls_feat = xreg_feat = xfor cls_conv in self.cls_convs:cls_feat = cls_conv(cls_feat)for reg_conv in self.reg_convs:reg_feat = reg_conv(reg_feat)cls_score = self.retina_cls(cls_feat)bbox_pred = self.retina_reg(reg_feat)return cls_score, bbox_pred

loss

这篇关于mmdetection - anchor-based方法训练流程解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931582

相关文章

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组