mmdetection - anchor-based方法训练流程解析

2024-04-24 11:08

本文主要是介绍mmdetection - anchor-based方法训练流程解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

训练流程图
在这里插入图片描述
最终会创建一个runner,然后调用runner.run时,实际会根据workflow中是train还是val,调用runner.py下的train和val函数。
batch_processor

def batch_processor(model, data, train_mode):# 这里的train_mode实际没用到losses = model(**data)loss, log_vars = parse_losses(losses)outputs = dict(loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))return outputs

mmcv/runner/runner.py
train

def train(self, data_loader, **kwargs):self.model.train()self.mode = 'train'self.data_loader = data_loaderself._max_iters = self._max_epochs * len(data_loader)self.call_hook('before_train_epoch')for i, data_batch in enumerate(data_loader):self._inner_iter = iself.call_hook('before_train_iter')outputs = self.batch_processor(self.model, data_batch, train_mode=True, **kwargs)if not isinstance(outputs, dict):raise TypeError('batch_processor() must return a dict')if 'log_vars' in outputs:self.log_buffer.update(outputs['log_vars'],outputs['num_samples'])self.outputs = outputsself.call_hook('after_train_iter')self._iter += 1self.call_hook('after_train_epoch')self._epoch += 1

val

def val(self, data_loader, **kwargs):self.model.eval()self.mode = 'val'self.data_loader = data_loaderself.call_hook('before_val_epoch')for i, data_batch in enumerate(data_loader):self._inner_iter = iself.call_hook('before_val_iter')with torch.no_grad():outputs = self.batch_processor(self.model, data_batch, train_mode=False, **kwargs)if not isinstance(outputs, dict):raise TypeError('batch_processor() must return a dict')if 'log_vars' in outputs:self.log_buffer.update(outputs['log_vars'],outputs['num_samples'])self.outputs = outputsself.call_hook('after_val_iter')self.call_hook('after_val_epoch')

validate目前只在_dist_train中有用到

训练时,实际调用:losses = model(**data),验证时,实际调用hook,运行:

with torch.no_grad():result = runner.model(return_loss=False, rescale=True, **data_gpu)

其中,TwoStageDetector和SingleStageDetector都继承了BaseDetector,在BaseDetector中,forward函数定义如下:

@auto_fp16(apply_to=('img', ))
def forward(self, img, img_meta, return_loss=True, **kwargs):if return_loss:return self.forward_train(img, img_meta, **kwargs)else:return self.forward_test(img, img_meta, **kwargs)

对于forward_test,其代码如下:

def forward_test(self, imgs, img_metas, **kwargs):for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]:if not isinstance(var, list):raise TypeError('{} must be a list, but got {}'.format(name, type(var)))num_augs = len(imgs)if num_augs != len(img_metas):raise ValueError('num of augmentations ({}) != num of image meta ({})'.format(len(imgs), len(img_metas)))# TODO: remove the restriction of imgs_per_gpu == 1 when preparedimgs_per_gpu = imgs[0].size(0)assert imgs_per_gpu == 1if num_augs == 1:return self.simple_test(imgs[0], img_metas[0], **kwargs)else:return self.aug_test(imgs, img_metas, **kwargs)

由上可以看出,子类需要写simple_test和aub_test函数。
对于一个检测模型(一阶或者二阶),在其class中,需要重写以下函数:

  • forward_train
  • simple_test
  • aug_test # 非必须

下面以retinanet举个例子,在retinanet的config文件中,model的type是RetinaNet,在mmdet/models/detectors/retinanet.py中,定义了RetinaNet,它的父类是SingleStageDetector,定义在mmdet/models/detectors/single_stage.py中,三个重要函数的代码如下:

def forward_train(self,img,img_metas,gt_bboxes,gt_labels,gt_bboxes_ignore=None):x = self.extract_feat(img)outs = self.bbox_head(x)loss_inputs = outs + (gt_bboxes, gt_labels, img_metas, self.train_cfg)losses = self.bbox_head.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)return lossesdef simple_test(self, img, img_meta, rescale=False):x = self.extract_feat(img)outs = self.bbox_head(x)bbox_inputs = outs + (img_meta, self.test_cfg, rescale)bbox_list = self.bbox_head.get_bboxes(*bbox_inputs)bbox_results = [bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes)for det_bboxes, det_labels in bbox_list]return bbox_results[0]def aug_test(self, imgs, img_metas, rescale=False):raise NotImplementedError

由上可知,计算loss的函数是在head中定义的,RetinaHead定义在mmdet/models/anchor_heads/retina_head.py中,RetinaHead三个关键函数的代码如下:

def _init_layers(self):self.relu = nn.ReLU(inplace=True)self.cls_convs = nn.ModuleList()self.reg_convs = nn.ModuleList()for i in range(self.stacked_convs):chn = self.in_channels if i == 0 else self.feat_channelsself.cls_convs.append(ConvModule(chn,self.feat_channels,3,stride=1,padding=1,conv_cfg=self.conv_cfg,norm_cfg=self.norm_cfg))self.reg_convs.append(ConvModule(chn,self.feat_channels,3,stride=1,padding=1,conv_cfg=self.conv_cfg,norm_cfg=self.norm_cfg))self.retina_cls = nn.Conv2d(self.feat_channels,self.num_anchors * self.cls_out_channels,3,padding=1)self.retina_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 3, padding=1)def init_weights(self):for m in self.cls_convs:normal_init(m.conv, std=0.01)for m in self.reg_convs:normal_init(m.conv, std=0.01)bias_cls = bias_init_with_prob(0.01)normal_init(self.retina_cls, std=0.01, bias=bias_cls)normal_init(self.retina_reg, std=0.01)def forward_single(self, x):cls_feat = xreg_feat = xfor cls_conv in self.cls_convs:cls_feat = cls_conv(cls_feat)for reg_conv in self.reg_convs:reg_feat = reg_conv(reg_feat)cls_score = self.retina_cls(cls_feat)bbox_pred = self.retina_reg(reg_feat)return cls_score, bbox_pred

其中,_init_layers创建head的结构,init_weights对conv的weight和bias做初始化,forward_single是经过head计算得到的分类和检测框预测结果。
forward
在具体的方法对应的head定义forward_single,最后由anchor_head.py中的forward函数进行组装。

from six.moves import map, zip
def multi_apply(func, *args, **kwargs):pfunc = partial(func, **kwargs) if kwargs else func # 将func的kwargs固定,返回该函数# 这里的*args=feats,调用forward_single对feats的元素依次跑前向map_results = map(pfunc, *args) # 得到[(stride1_cls,stride1_bbox,...), (stride2_cls,stride2_bbox, ...]return tuple(map(list, zip(*map_results)))# zip(*map_results) 得到 [(stride1_cls,stride2_cls,stride3_cls,...),(stride1_bbox,stride2_bbox,stride3_bbox,...)]# map(list, zip(*map_results)) 将(stride1_cls,stride2_cls,stride3_cls,...)变为[stride1_cls,stride2_cls,stride3_cls,...]# tuple之后,最后得到([stride1_cls,stride2_cls,stride3_cls,...],[stride1_bbox,stride2_bbox,stride3_bbox,...])def forward(self, feats):# 输入feats是一个list,长度为stride个数,其中元素为nchwreturn multi_apply(self.forward_single, feats)def forward_single(self, x):# 这里的x为feats中的某一个元素cls_feat = xreg_feat = xfor cls_conv in self.cls_convs:cls_feat = cls_conv(cls_feat)for reg_conv in self.reg_convs:reg_feat = reg_conv(reg_feat)cls_score = self.retina_cls(cls_feat)bbox_pred = self.retina_reg(reg_feat)return cls_score, bbox_pred

loss

这篇关于mmdetection - anchor-based方法训练流程解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931582

相关文章

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::