mmdetection - anchor-based方法训练流程解析

2024-04-24 11:08

本文主要是介绍mmdetection - anchor-based方法训练流程解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

训练流程图
在这里插入图片描述
最终会创建一个runner,然后调用runner.run时,实际会根据workflow中是train还是val,调用runner.py下的train和val函数。
batch_processor

def batch_processor(model, data, train_mode):# 这里的train_mode实际没用到losses = model(**data)loss, log_vars = parse_losses(losses)outputs = dict(loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))return outputs

mmcv/runner/runner.py
train

def train(self, data_loader, **kwargs):self.model.train()self.mode = 'train'self.data_loader = data_loaderself._max_iters = self._max_epochs * len(data_loader)self.call_hook('before_train_epoch')for i, data_batch in enumerate(data_loader):self._inner_iter = iself.call_hook('before_train_iter')outputs = self.batch_processor(self.model, data_batch, train_mode=True, **kwargs)if not isinstance(outputs, dict):raise TypeError('batch_processor() must return a dict')if 'log_vars' in outputs:self.log_buffer.update(outputs['log_vars'],outputs['num_samples'])self.outputs = outputsself.call_hook('after_train_iter')self._iter += 1self.call_hook('after_train_epoch')self._epoch += 1

val

def val(self, data_loader, **kwargs):self.model.eval()self.mode = 'val'self.data_loader = data_loaderself.call_hook('before_val_epoch')for i, data_batch in enumerate(data_loader):self._inner_iter = iself.call_hook('before_val_iter')with torch.no_grad():outputs = self.batch_processor(self.model, data_batch, train_mode=False, **kwargs)if not isinstance(outputs, dict):raise TypeError('batch_processor() must return a dict')if 'log_vars' in outputs:self.log_buffer.update(outputs['log_vars'],outputs['num_samples'])self.outputs = outputsself.call_hook('after_val_iter')self.call_hook('after_val_epoch')

validate目前只在_dist_train中有用到

训练时,实际调用:losses = model(**data),验证时,实际调用hook,运行:

with torch.no_grad():result = runner.model(return_loss=False, rescale=True, **data_gpu)

其中,TwoStageDetector和SingleStageDetector都继承了BaseDetector,在BaseDetector中,forward函数定义如下:

@auto_fp16(apply_to=('img', ))
def forward(self, img, img_meta, return_loss=True, **kwargs):if return_loss:return self.forward_train(img, img_meta, **kwargs)else:return self.forward_test(img, img_meta, **kwargs)

对于forward_test,其代码如下:

def forward_test(self, imgs, img_metas, **kwargs):for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]:if not isinstance(var, list):raise TypeError('{} must be a list, but got {}'.format(name, type(var)))num_augs = len(imgs)if num_augs != len(img_metas):raise ValueError('num of augmentations ({}) != num of image meta ({})'.format(len(imgs), len(img_metas)))# TODO: remove the restriction of imgs_per_gpu == 1 when preparedimgs_per_gpu = imgs[0].size(0)assert imgs_per_gpu == 1if num_augs == 1:return self.simple_test(imgs[0], img_metas[0], **kwargs)else:return self.aug_test(imgs, img_metas, **kwargs)

由上可以看出,子类需要写simple_test和aub_test函数。
对于一个检测模型(一阶或者二阶),在其class中,需要重写以下函数:

  • forward_train
  • simple_test
  • aug_test # 非必须

下面以retinanet举个例子,在retinanet的config文件中,model的type是RetinaNet,在mmdet/models/detectors/retinanet.py中,定义了RetinaNet,它的父类是SingleStageDetector,定义在mmdet/models/detectors/single_stage.py中,三个重要函数的代码如下:

def forward_train(self,img,img_metas,gt_bboxes,gt_labels,gt_bboxes_ignore=None):x = self.extract_feat(img)outs = self.bbox_head(x)loss_inputs = outs + (gt_bboxes, gt_labels, img_metas, self.train_cfg)losses = self.bbox_head.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)return lossesdef simple_test(self, img, img_meta, rescale=False):x = self.extract_feat(img)outs = self.bbox_head(x)bbox_inputs = outs + (img_meta, self.test_cfg, rescale)bbox_list = self.bbox_head.get_bboxes(*bbox_inputs)bbox_results = [bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes)for det_bboxes, det_labels in bbox_list]return bbox_results[0]def aug_test(self, imgs, img_metas, rescale=False):raise NotImplementedError

由上可知,计算loss的函数是在head中定义的,RetinaHead定义在mmdet/models/anchor_heads/retina_head.py中,RetinaHead三个关键函数的代码如下:

def _init_layers(self):self.relu = nn.ReLU(inplace=True)self.cls_convs = nn.ModuleList()self.reg_convs = nn.ModuleList()for i in range(self.stacked_convs):chn = self.in_channels if i == 0 else self.feat_channelsself.cls_convs.append(ConvModule(chn,self.feat_channels,3,stride=1,padding=1,conv_cfg=self.conv_cfg,norm_cfg=self.norm_cfg))self.reg_convs.append(ConvModule(chn,self.feat_channels,3,stride=1,padding=1,conv_cfg=self.conv_cfg,norm_cfg=self.norm_cfg))self.retina_cls = nn.Conv2d(self.feat_channels,self.num_anchors * self.cls_out_channels,3,padding=1)self.retina_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 3, padding=1)def init_weights(self):for m in self.cls_convs:normal_init(m.conv, std=0.01)for m in self.reg_convs:normal_init(m.conv, std=0.01)bias_cls = bias_init_with_prob(0.01)normal_init(self.retina_cls, std=0.01, bias=bias_cls)normal_init(self.retina_reg, std=0.01)def forward_single(self, x):cls_feat = xreg_feat = xfor cls_conv in self.cls_convs:cls_feat = cls_conv(cls_feat)for reg_conv in self.reg_convs:reg_feat = reg_conv(reg_feat)cls_score = self.retina_cls(cls_feat)bbox_pred = self.retina_reg(reg_feat)return cls_score, bbox_pred

其中,_init_layers创建head的结构,init_weights对conv的weight和bias做初始化,forward_single是经过head计算得到的分类和检测框预测结果。
forward
在具体的方法对应的head定义forward_single,最后由anchor_head.py中的forward函数进行组装。

from six.moves import map, zip
def multi_apply(func, *args, **kwargs):pfunc = partial(func, **kwargs) if kwargs else func # 将func的kwargs固定,返回该函数# 这里的*args=feats,调用forward_single对feats的元素依次跑前向map_results = map(pfunc, *args) # 得到[(stride1_cls,stride1_bbox,...), (stride2_cls,stride2_bbox, ...]return tuple(map(list, zip(*map_results)))# zip(*map_results) 得到 [(stride1_cls,stride2_cls,stride3_cls,...),(stride1_bbox,stride2_bbox,stride3_bbox,...)]# map(list, zip(*map_results)) 将(stride1_cls,stride2_cls,stride3_cls,...)变为[stride1_cls,stride2_cls,stride3_cls,...]# tuple之后,最后得到([stride1_cls,stride2_cls,stride3_cls,...],[stride1_bbox,stride2_bbox,stride3_bbox,...])def forward(self, feats):# 输入feats是一个list,长度为stride个数,其中元素为nchwreturn multi_apply(self.forward_single, feats)def forward_single(self, x):# 这里的x为feats中的某一个元素cls_feat = xreg_feat = xfor cls_conv in self.cls_convs:cls_feat = cls_conv(cls_feat)for reg_conv in self.reg_convs:reg_feat = reg_conv(reg_feat)cls_score = self.retina_cls(cls_feat)bbox_pred = self.retina_reg(reg_feat)return cls_score, bbox_pred

loss

这篇关于mmdetection - anchor-based方法训练流程解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931582

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取