多路径网格问题的解决策略:比较五种不同算法【python力扣62题】

本文主要是介绍多路径网格问题的解决策略:比较五种不同算法【python力扣62题】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

一个机器人位于一个 m x n 网格的左上角(起始点在下图标记为 “Start” )。机器人每次只能向下或向右移动一步。机器人试图达到网格的右下角(在下图标记为 “Finish”)。问总共有多少条不同的路径?

输入格式
  • m:网格的行数。
  • n:网格的列数。
输出格式
  • 返回一个整数,表示所有可能的路径数量。

示例

示例 1
输入: m = 3, n = 7
输出: 28
示例 2
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

方法一:动态规划

解题步骤
  1. 初始化状态:创建一个二维数组 dp,其中 dp[i][j] 表示到达点 (i, j) 的路径数量。
  2. 边界条件:网格的第一行和第一列的路径数都是 1,因为只有一种方式到达(要么一直向右,要么一直向下)。
  3. 状态转移:对于其他位置,路径数 dp[i][j] 等于从左边来的路径数加上从上面来的路径数,即 dp[i][j] = dp[i-1][j] + dp[i][j-1]
  4. 返回结果dp[m-1][n-1] 即为所求结果。
完整的规范代码
def uniquePaths(m, n):"""使用动态规划解决不同路径问题:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""dp = [[1] * n for _ in range(m)]for i in range(1, m):for j in range(1, n):dp[i][j] = dp[i-1][j] + dp[i][j-1]return dp[m-1][n-1]# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m * n)),需要填充一个 mn 列的矩阵。
  • 空间复杂度:(O(m * n)),使用了一个同样大小的二维数组作为动态规划表。

方法二:空间优化的动态规划

解题步骤
  1. 使用一维数组:利用一维数组 dp 来保存上一行的结果,降低空间复杂度。
  2. 迭代更新:对每一行使用相同的数组进行迭代更新,dp[j] 代表当前行第 j 列的路径数,更新公式仍为 dp[j] = dp[j] + dp[j-1]
  3. 初始化dp 的所有元素初始化为 1。
完整的规范代码
def uniquePaths(m, n):"""使用一维数组进行动态规划:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""dp = [1] * nfor i in range(1, m):for j in range(1, n):dp[j] += dp[j - 1]return dp[-1]# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m * n)),需要迭代更新数组 m-1 次,每次迭代有 n-1 步。
  • 空间复杂度:(O(n)),使用了一个长度为 n 的一维数组。

方法三:数学组合方法

解题步骤
  1. 计算组合数:从起点到终点需要走 m+n-2 步,其中 m-1 步向下,n-1 步向右,问题转化为计算从 m+n-2 步中选择 m-1 步的组合数。
  2. 使用公式计算:使用组合数公式 C(k, n) = n! / (k! * (n-k)!) 来计算结果。
完整的规范代码
def uniquePaths(m, n):"""使用数学组合的方法解决不同路径问题:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""from math import factorialreturn factorial(m + n - 2) // (factorial(m - 1) * factorial(n - 1))# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m + n)),计算阶乘的时间复杂度。
  • 空间复杂度:(O(1)),除输入外不需要额外的存储空间。

方法四:深度优先搜索(DFS)

解题步骤
  1. DFS递归:从起点开始,递归地探索所有向右和向下的路径。
  2. 终止条件:当到达终点时,路径计数增加。
  3. 优化:使用记忆化存储已经计算过的位置的路径数,避免重复计算。
完整的规范代码
def uniquePaths(m, n):"""使用DFS和记忆化搜索解决不同路径问题:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""memo = {}def dfs(x, y):if (x, y) in memo:return memo[(x, y)]if x == m - 1 and y == n - 1:return 1paths = 0if x < m - 1:paths += dfs(x + 1, y)if y < n - 1:paths += dfs(x, y + 1)memo[(x, y)] = pathsreturn pathsreturn dfs(0, 0)# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m * n)),使用记忆化后避免了重复计算。
  • 空间复杂度:(O(m * n)),使用了额外的哈希表来存储中间结果。

方法五:广度优先搜索(BFS)

解题步骤
  1. 队列实现BFS:使用队列存储每个位置和到达该位置的路径数量。
  2. 逐层扩展:从起点开始,逐层扩展到可达的右侧和下侧格子。
  3. 累加路径数:到达终点的路径数累加。
完整的规范代码
from collections import dequedef uniquePaths(m, n):"""使用BFS解决不同路径问题:param m: int, 网格的行数:param n: int, 网格的列数:return: int, 不同的路径数量"""queue = deque([(0, 0)])paths = [[0] * n for _ in range(m)]paths[0][0] = 1while queue:x, y = queue.popleft()for dx, dy in [(1, 0), (0, 1)]:nx, ny = x + dx, y + dyif 0 <= nx < m and 0 <= ny < n:if paths[nx][ny] == 0:queue.append((nx, ny))paths[nx][ny] += paths[x][y]return paths[m-1][n-1]# 示例调用
print(uniquePaths(3, 7))  # 输出: 28
print(uniquePaths(3, 2))  # 输出: 3
算法分析
  • 时间复杂度:(O(m * n)),每个节点入队出队一次。
  • 空间复杂度:(O(m * n)),存储每个位置的路径数及队列的空间需求。

不同算法的优劣势对比

特征方法一: 动态规划方法二: 空间优化DP方法三: 数学组合方法四: DFS方法五: BFS
时间复杂度(O(m * n))(O(m * n))(O(m + n))(O(m * n))(O(m * n))
空间复杂度(O(m * n))(O(n))(O(1))(O(m * n))(O(m * n))
优势直观,易理解空间效率高计算最快,非迭代灵活,适用于复杂边界层次清晰,适用于大规模
劣势空间占用高优化限于列对大数处理有限制时间空间成本高需要额外存储空间

应用示例

游戏开发中的路径发现
在策略游戏或迷宫游戏中,开发者可以利用这些算法来计算从起点到终点的所有可能路径,为游戏的AI决策提供支持,比如在自动生成的迷宫中计算最优路径或在战略游戏中规划单位的行动路线。这些算法提供了不同的效率和实现复杂度,使得开发者可以根据具体游戏场景和性能要求选择最适合的方法。

这篇关于多路径网格问题的解决策略:比较五种不同算法【python力扣62题】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931256

相关文章

VSCode中C/C++编码乱码问题的两种解决方法

《VSCode中C/C++编码乱码问题的两种解决方法》在中国地区,Windows系统中的cmd和PowerShell默认编码是GBK,但VSCode默认使用UTF-8编码,这种编码不一致会导致在VSC... 目录问题方法一:通过 Code Runner 插件调整编码配置步骤方法二:在 PowerShell

mybatis-plus分页无效问题解决

《mybatis-plus分页无效问题解决》本文主要介绍了mybatis-plus分页无效问题解决,原因是配置分页插件的版本问题,旧版本和新版本的MyBatis-Plus需要不同的分页配置,感兴趣的可... 昨天在做一www.chinasem.cn个新项目使用myBATis-plus分页一直失败,后来经过多方

详解如何使用Python提取视频文件中的音频

《详解如何使用Python提取视频文件中的音频》在多媒体处理中,有时我们需要从视频文件中提取音频,本文为大家整理了几种使用Python编程语言提取视频文件中的音频的方法,大家可以根据需要进行选择... 目录引言代码部分方法扩展引言在多媒体处理中,有时我们需要从视频文件中提取音频,以便进一步处理或分析。本文

电脑开机提示krpt.dll丢失怎么解决? krpt.dll文件缺失的多种解决办法

《电脑开机提示krpt.dll丢失怎么解决?krpt.dll文件缺失的多种解决办法》krpt.dll是Windows操作系统中的一个动态链接库文件,它对于系统的正常运行起着重要的作用,本文将详细介绍... 在使用 Windows 操作系统的过程中,用户有时会遇到各种错误提示,其中“找不到 krpt.dll”

C/C++随机数生成的五种方法

《C/C++随机数生成的五种方法》C++作为一种古老的编程语言,其随机数生成的方法已经经历了多次的变革,早期的C++版本使用的是rand()函数和RAND_MAX常量,这种方法虽然简单,但并不总是提供... 目录C/C++ 随机数生成方法1. 使用 rand() 和 srand()2. 使用 <random

python多种数据类型输出为Excel文件

《python多种数据类型输出为Excel文件》本文主要介绍了将Python中的列表、元组、字典和集合等数据类型输出到Excel文件中,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一.列表List二.字典dict三.集合set四.元组tuplepython中的列表、元组、字典

Java反转字符串的五种方法总结

《Java反转字符串的五种方法总结》:本文主要介绍五种在Java中反转字符串的方法,包括使用StringBuilder的reverse()方法、字符数组、自定义StringBuilder方法、直接... 目录前言方法一:使用StringBuilder的reverse()方法方法二:使用字符数组方法三:使用自

VSCode配置Anaconda Python环境的实现

《VSCode配置AnacondaPython环境的实现》VisualStudioCode中可以使用Anaconda环境进行Python开发,本文主要介绍了VSCode配置AnacondaPytho... 目录前言一、安装 Visual Studio Code 和 Anaconda二、创建或激活 conda

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音