动态规划——切割钢条问题

2024-04-24 05:04

本文主要是介绍动态规划——切割钢条问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、动态规划

       动态规划算法通常用于解决最优化问题寻求最优解)。其思想与分治法类似,将待求解的问题分成若干个子问题,先求出子问题,再根据子问题的解求出原来问题中的解,与分支法不同的是,在动态规划中,这些子问题的解是不相互独立的

        采用动态规划求解的问题通常有以下性质:

        1.最优化原理:问题的最优解中包含的子问题的解也是最优的

        2.无后效性:即某阶段状态一旦确定,就不受该状态以后决策的影响,只与当前状态有关。

        3.有重叠子问题:子问题之间是不相互独立的,一个子问题在下一阶段的决策中可能被多次用到。(通常减少不必要的重复操作)

二、钢条切割问题        

        给定一段长度为 n 的钢条和一个价格表 pi ,求钢条切割方案使得销售收益 rn 最大。

长度I

1

2

3

4

5

6

7

8

9

10

价格pi

1

5

8

9

10

17

17

20

24

30

        案例:长度为 4 的钢条,如何切割使得销售额最高?

        考虑两种情况:1.切割成4个长度为1的钢条,总收益是4;

                                  2.切割成2个长度为2的钢条,总收益是10。

                                  3.切割成1个长度为1和一个长度为3的钢条,总收益是9

                                 4.切割成1个长度为4的钢条,总收益为9

        法一(易理解)

        对于求收益r[n]最大的切割方案(最优解)

        1.不切割,收益为 pn

        2.先将该钢条分为切为两根,则当该两根钢条的收益之和最大时(取最优解时),对应长度为n的钢条收益也最大,最优解的和就是当前情况的最优解,可以得出:

                r_{n}=max(p_{n},r_{n-1} +r_{1},r_{n-2} +r_{2},\cdots ,r_{1} +r_{n-1}) 

        法二 (简单)

        对于该求解方法可以改为一种相似但更简单的递归求解方法:

        将钢条从左边切割下长度为 i 的一段,只对右边剩下的长度为 n-i 的一段继续进行切割(递归求解),对左边的一段不再进行切割。

关于此想法的理解:

将长度为n的钢条分解为左边开始一段,以及剩余部分继续分解的结果(通过递归) 

或者理解为:对于一根长度为n钢条,总存在某种切割,会使得切出长度为 i 的钢条  (1\leq i\leq n)

           此时公式为:

                                r_{n}=\underset{1\leq i\leq n}{max}(p_{i}+r_{n-i})

           递归函数的伪代码为:

int get_best(int n)
{if(n<=0) return 0;int maxn=-1;for(int i=1;i<=n;i++)maxn=max(p[i]+get_best(n-i),maxn);  // 通过递归求出最大//r[n]=maxn;return maxn;
}

        根据代码不难发现,在递归函数get_best中,会存在同一个变量反复递归的情况,从而引起时间的浪费,此时时间复杂度达到 O(2^n)

        需要通过剪枝的方法避免重复的操作(自顶向下法)

int get_best(int n)
{if(n<=0) return 0;if(r[n]>0) return r[n]; // 若已经访问过,即找到r[n]的最优解时,直接返回int maxn=-1;for(int i=1;i<=n;i++)maxn=max(p[i]+get_best(n-i),maxn);r[n]=maxn;return maxn;
}

  此外,还可以通过自底向上的方法求出最优解,此时为递推操作,不需要递归

int get_best2(int n)
{for(int i=1;i<=n;i++){r[i]=p[i]; // 直接将 长度为 i的切割下 for(int j=1;j<i;j++)r[i]=max(r[i],p[j]+r[i-j]); //免去递归操作 }} 

         重构解

        将最优解的切割方案求出

int get_best2(int n)
{for(int i=1;i<=n;i++){r[i]=p[i]; // 直接将 长度为 i的切割下 s[i]=i;for(int j=1;j<i;j++)if(r[i]<p[j]+r[i-j])  //免去递归操作 {r[i]=p[j]+r[i-j];s[i]=j;  // 表示当长度为i时,将切割长度为j的钢条 ,剩余 i-j 已经求出最优解和切割方案了 }}int x=n;while(x>0){printf("%d ",s[x]);x-=s[x];}
}

此过程只需在求解规模为 i 的子问题时将,第一段钢条的最优切割长度j保存在 s [ i ] 中

这篇关于动态规划——切割钢条问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930818

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模