动态规划——切割钢条问题

2024-04-24 05:04

本文主要是介绍动态规划——切割钢条问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、动态规划

       动态规划算法通常用于解决最优化问题寻求最优解)。其思想与分治法类似,将待求解的问题分成若干个子问题,先求出子问题,再根据子问题的解求出原来问题中的解,与分支法不同的是,在动态规划中,这些子问题的解是不相互独立的

        采用动态规划求解的问题通常有以下性质:

        1.最优化原理:问题的最优解中包含的子问题的解也是最优的

        2.无后效性:即某阶段状态一旦确定,就不受该状态以后决策的影响,只与当前状态有关。

        3.有重叠子问题:子问题之间是不相互独立的,一个子问题在下一阶段的决策中可能被多次用到。(通常减少不必要的重复操作)

二、钢条切割问题        

        给定一段长度为 n 的钢条和一个价格表 pi ,求钢条切割方案使得销售收益 rn 最大。

长度I

1

2

3

4

5

6

7

8

9

10

价格pi

1

5

8

9

10

17

17

20

24

30

        案例:长度为 4 的钢条,如何切割使得销售额最高?

        考虑两种情况:1.切割成4个长度为1的钢条,总收益是4;

                                  2.切割成2个长度为2的钢条,总收益是10。

                                  3.切割成1个长度为1和一个长度为3的钢条,总收益是9

                                 4.切割成1个长度为4的钢条,总收益为9

        法一(易理解)

        对于求收益r[n]最大的切割方案(最优解)

        1.不切割,收益为 pn

        2.先将该钢条分为切为两根,则当该两根钢条的收益之和最大时(取最优解时),对应长度为n的钢条收益也最大,最优解的和就是当前情况的最优解,可以得出:

                r_{n}=max(p_{n},r_{n-1} +r_{1},r_{n-2} +r_{2},\cdots ,r_{1} +r_{n-1}) 

        法二 (简单)

        对于该求解方法可以改为一种相似但更简单的递归求解方法:

        将钢条从左边切割下长度为 i 的一段,只对右边剩下的长度为 n-i 的一段继续进行切割(递归求解),对左边的一段不再进行切割。

关于此想法的理解:

将长度为n的钢条分解为左边开始一段,以及剩余部分继续分解的结果(通过递归) 

或者理解为:对于一根长度为n钢条,总存在某种切割,会使得切出长度为 i 的钢条  (1\leq i\leq n)

           此时公式为:

                                r_{n}=\underset{1\leq i\leq n}{max}(p_{i}+r_{n-i})

           递归函数的伪代码为:

int get_best(int n)
{if(n<=0) return 0;int maxn=-1;for(int i=1;i<=n;i++)maxn=max(p[i]+get_best(n-i),maxn);  // 通过递归求出最大//r[n]=maxn;return maxn;
}

        根据代码不难发现,在递归函数get_best中,会存在同一个变量反复递归的情况,从而引起时间的浪费,此时时间复杂度达到 O(2^n)

        需要通过剪枝的方法避免重复的操作(自顶向下法)

int get_best(int n)
{if(n<=0) return 0;if(r[n]>0) return r[n]; // 若已经访问过,即找到r[n]的最优解时,直接返回int maxn=-1;for(int i=1;i<=n;i++)maxn=max(p[i]+get_best(n-i),maxn);r[n]=maxn;return maxn;
}

  此外,还可以通过自底向上的方法求出最优解,此时为递推操作,不需要递归

int get_best2(int n)
{for(int i=1;i<=n;i++){r[i]=p[i]; // 直接将 长度为 i的切割下 for(int j=1;j<i;j++)r[i]=max(r[i],p[j]+r[i-j]); //免去递归操作 }} 

         重构解

        将最优解的切割方案求出

int get_best2(int n)
{for(int i=1;i<=n;i++){r[i]=p[i]; // 直接将 长度为 i的切割下 s[i]=i;for(int j=1;j<i;j++)if(r[i]<p[j]+r[i-j])  //免去递归操作 {r[i]=p[j]+r[i-j];s[i]=j;  // 表示当长度为i时,将切割长度为j的钢条 ,剩余 i-j 已经求出最优解和切割方案了 }}int x=n;while(x>0){printf("%d ",s[x]);x-=s[x];}
}

此过程只需在求解规模为 i 的子问题时将,第一段钢条的最优切割长度j保存在 s [ i ] 中

这篇关于动态规划——切割钢条问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930818

相关文章

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La