算法矩阵提速原理

2024-04-23 12:12
文章标签 算法 原理 矩阵 提速

本文主要是介绍算法矩阵提速原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不管是图形还是AI,如果看过相关的算法,都会注意到矩阵运算,很多讲算法的教程都会说将for转换成矩阵,可以极大的增加效率。

但是这不是为难我们这些数学低能儿吗?矩阵运算这些高级货算是高级数学了,比CURD还是难多了。今天还是抽时间来看看。

其实就我来看,计算机懂个P的高等数学,什么线性代数,概率,微积分,对于计算机来说都没有意义,没有意义,没有意义。计算机懂得就是1+1=10。但是在实践中,很多算法一旦上了矩阵,就跟开了外挂一样,速度飞快,这个又是什么原因呢?难道真的计算机上了大学,学了高等数学?我觉得不是,原因还是和计算机中CPU的特性有关。要知道背后的原理,还是得从汇编着手。

(因为最近实在忙,目前的代码来自GPT,感觉不是很准,后面有时间会更新)

for的汇编:

section .text
global for_loopfor_loop:push ebpmov ebp, espmov ecx, [ebp+8]  ; 循环计数器的上限mov eax, 0         ; 初始化计数器loop_start:; 这里执行循环体的操作inc eax            ; 计数器加一cmp eax, ecx       ; 比较计数器和上限jl loop_start      ; 如果计数器小于上限,则继续循环pop ebpret

在 for 循环中,每次迭代都需要执行比较和条件跳转操作,以及计数器的增加操作。这意味着每次循环迭代都会有额外的指令开销和跳转开销。

矩阵的汇编(这里我是觉得没说全,应该涉及到_mm256_dp_ps这些指令):

section .text
global matrix_multiplymatrix_multiply:push ebpmov ebp, esp; 这里执行矩阵乘法的操作pop ebpret

而在矩阵运算中,尤其是矩阵乘法,通常会使用更多的向量化指令和并行化技术。这使得矩阵运算可以更有效地利用处理器的并行性和向量化能力,从而减少了指令级别的开销。

总的来说:

矩阵运算涉及大量的数据并行处理,可以更好地利用现代处理器的并行性能。矩阵运算通常涉及大规模的数据集,这意味着可以更好地利用处理器的缓存系统和数据局部性。矩阵运算往往可以通过优化算法和数据访问模式来提高计算效率,例如分块矩阵乘法、缓存优化等。

另外一方面可以掰扯的就是计算机历史了。我自己买入的第一台计算机是MMX166,应该是97年。当时牛逼吹的非常响,说什么多媒体CPU,然后我就稀里糊涂买了。MMX是什么呢?MMX 指令集包括一系列针对整数运算和 SIMD(Single Instruction, Multiple Data,单指令,多数据)操作的指令。这些指令允许处理器同时对多个数据元素执行相同的操作,从而实现更高的数据吞吐量和更高的性能。MMX 指令集主要用于处理像素、音频和视频数据等多媒体应用程序。

这里又要说说图形,音视频的数据的一些特点了,这些数据就是矩阵运算的最好示范,现在的CPU架构中,为了加速这些运算,所以进行了很多特别的优化,比如超线程,SIMD等等。所以说计算机并不是天生就擅长矩阵运算,而是之前环境中,为了加速多媒体的处理,大神们在CPU中做了很多针对矩阵运算的强化和优化。相当于体系中有了一条高速的特别通道。

所以回到现在,为了使用这个特别通道,将很多运算写成矩阵运算的形式,就可以大大的加速。此外,很多AI算法本身从数学上来说也是矩阵运算,这个就更合适了。所以这里也解释了为什么GPU更适合处理AI算法,因为GPU本身是用来处理图像的,就是矩阵运算,从设计之初就这样考虑的。后面误打误撞发现也很适合干AI,所以直接原地起飞,这个就是另外的一个故事了。

简而言之,在现在的CPU体系中,使用矩阵运算,可以更贴近现在的架构,比如Cache的结构,SIMD的指令集以及一些其它指令集。所以会觉得速度很快。

当然,也是看优化,如果说一个编译器能自动把多层的for优化到底,也是性能不会比矩阵运算差,就看有没有大神愿意出来干这事了。

参考:

27 | SIMD:如何加速矩阵乘法?_simd 矩阵乘法-CSDN博客

SIMD加速矩阵运算-CSDN博客

这篇关于算法矩阵提速原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/928757

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、