算法矩阵提速原理

2024-04-23 12:12
文章标签 算法 原理 矩阵 提速

本文主要是介绍算法矩阵提速原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不管是图形还是AI,如果看过相关的算法,都会注意到矩阵运算,很多讲算法的教程都会说将for转换成矩阵,可以极大的增加效率。

但是这不是为难我们这些数学低能儿吗?矩阵运算这些高级货算是高级数学了,比CURD还是难多了。今天还是抽时间来看看。

其实就我来看,计算机懂个P的高等数学,什么线性代数,概率,微积分,对于计算机来说都没有意义,没有意义,没有意义。计算机懂得就是1+1=10。但是在实践中,很多算法一旦上了矩阵,就跟开了外挂一样,速度飞快,这个又是什么原因呢?难道真的计算机上了大学,学了高等数学?我觉得不是,原因还是和计算机中CPU的特性有关。要知道背后的原理,还是得从汇编着手。

(因为最近实在忙,目前的代码来自GPT,感觉不是很准,后面有时间会更新)

for的汇编:

section .text
global for_loopfor_loop:push ebpmov ebp, espmov ecx, [ebp+8]  ; 循环计数器的上限mov eax, 0         ; 初始化计数器loop_start:; 这里执行循环体的操作inc eax            ; 计数器加一cmp eax, ecx       ; 比较计数器和上限jl loop_start      ; 如果计数器小于上限,则继续循环pop ebpret

在 for 循环中,每次迭代都需要执行比较和条件跳转操作,以及计数器的增加操作。这意味着每次循环迭代都会有额外的指令开销和跳转开销。

矩阵的汇编(这里我是觉得没说全,应该涉及到_mm256_dp_ps这些指令):

section .text
global matrix_multiplymatrix_multiply:push ebpmov ebp, esp; 这里执行矩阵乘法的操作pop ebpret

而在矩阵运算中,尤其是矩阵乘法,通常会使用更多的向量化指令和并行化技术。这使得矩阵运算可以更有效地利用处理器的并行性和向量化能力,从而减少了指令级别的开销。

总的来说:

矩阵运算涉及大量的数据并行处理,可以更好地利用现代处理器的并行性能。矩阵运算通常涉及大规模的数据集,这意味着可以更好地利用处理器的缓存系统和数据局部性。矩阵运算往往可以通过优化算法和数据访问模式来提高计算效率,例如分块矩阵乘法、缓存优化等。

另外一方面可以掰扯的就是计算机历史了。我自己买入的第一台计算机是MMX166,应该是97年。当时牛逼吹的非常响,说什么多媒体CPU,然后我就稀里糊涂买了。MMX是什么呢?MMX 指令集包括一系列针对整数运算和 SIMD(Single Instruction, Multiple Data,单指令,多数据)操作的指令。这些指令允许处理器同时对多个数据元素执行相同的操作,从而实现更高的数据吞吐量和更高的性能。MMX 指令集主要用于处理像素、音频和视频数据等多媒体应用程序。

这里又要说说图形,音视频的数据的一些特点了,这些数据就是矩阵运算的最好示范,现在的CPU架构中,为了加速这些运算,所以进行了很多特别的优化,比如超线程,SIMD等等。所以说计算机并不是天生就擅长矩阵运算,而是之前环境中,为了加速多媒体的处理,大神们在CPU中做了很多针对矩阵运算的强化和优化。相当于体系中有了一条高速的特别通道。

所以回到现在,为了使用这个特别通道,将很多运算写成矩阵运算的形式,就可以大大的加速。此外,很多AI算法本身从数学上来说也是矩阵运算,这个就更合适了。所以这里也解释了为什么GPU更适合处理AI算法,因为GPU本身是用来处理图像的,就是矩阵运算,从设计之初就这样考虑的。后面误打误撞发现也很适合干AI,所以直接原地起飞,这个就是另外的一个故事了。

简而言之,在现在的CPU体系中,使用矩阵运算,可以更贴近现在的架构,比如Cache的结构,SIMD的指令集以及一些其它指令集。所以会觉得速度很快。

当然,也是看优化,如果说一个编译器能自动把多层的for优化到底,也是性能不会比矩阵运算差,就看有没有大神愿意出来干这事了。

参考:

27 | SIMD:如何加速矩阵乘法?_simd 矩阵乘法-CSDN博客

SIMD加速矩阵运算-CSDN博客

这篇关于算法矩阵提速原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/928757

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别