本文主要是介绍Python编曲实践(六):将MIDI文件转化成矩阵,继承PyTorch的Dataset类来构建数据集(附数据集网盘下载链接),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
前言
上篇文章中,我介绍了如何通过编写爬虫来从 Free Midi Files Download 网站上爬取海量的MIDI数据。本篇文章介绍的是使用 pretty_midi 库来将MIDI文件转化成矩阵,并通过PyTorch的Dataset类来构建数据集,为之后的训练与测试中传入张量做准备。
实施过程
将MIDI文件转化成稀疏矩阵信息并存储
构建数据集的第一步是将MIDI文件中的音乐信息以(时间,音高)的矩阵形式提取出来,并以稀疏矩阵的形式来保存到npz文件中。pretty_midi库提供了在每一个音轨中遍历音符(Note),并得到每个音符的音高(pitch),音符开始时间(note_on)和音符结束时间(note_off),将开始和结束时间分别除以十六分音符的长度(60秒 / 120BPM / 4),就可以得到开始和结束的时间在矩阵中对应的位置。
代码详见 MusicCritique/util/data/create_database.py
def generate_nonzeros_by_notes():root_dir = 'E:/merged_midi/'midi_collection = get_midi_collection()genre_collection = get_genre_collection()for genre in genre_collection.find():genre_name = genre['Name']print(genre_name)npy_file_root_dir = 'E:/midi_matrix/one_instr/' + genre_name + '/'if not os.path.exists(npy_file_root_dir):os.mkdir(npy_file_root_dir)for midi in midi_collection.find({'Genre': genre_name, 'OneInstrNpyGenerated': False}, no_cursor_timeout = True):path = root_dir + genre_name + '/' + midi['md5'] + '.mid'save_path = npy_file_root_dir + midi['md5'] + '.npz'pm = pretty_midi.PrettyMIDI(path)# segment_num = math.ceil(pm.get_end_time() / 8)note_range = (24, 108)# data = np.zeros((segment_num, 64, 84), np.bool_)nonzeros = []sixteenth_length = 60 / 120 / 4for instr in pm.instruments:if not instr.is_drum:for note in instr.notes:start = int(note.start / sixteenth_length)end = int(note.end / sixteenth_length)pitch = note.pitchif pitch < note_range[0] or pitch >= note_range[1]:continueelse:pitch -= 24for time_raw in range(start, end):segment = int(time_raw / 64)time = time_raw % 64nonzeros.append([segment, time, pitch])nonzeros = np.array(nonzeros)np.savez_compressed(save_path, nonzeros)midi_collection.update_one({'_id': midi['_id']}, {'$set': {'OneInstrNpyGenerated': True}})print('Progress: {:.2%}'.format(midi_collection.count({'Genre': genre_name, 'OneInstrNpyGenerated': True}) / midi_collection.count({'Genre': genre_name})), end='\n')
- 为了方便存储,我将每个MIDI文件以四个小节为单位进行分割,考虑到的最短时长单位是十六分音符,这样每个矩阵的第一维度大小是64(4*16),代表音符在时间上的分布情况。
- MIDI文件音高数值范围在0~127,可以存储从A0到G9的横跨10个八度的音高,对应关系可以参考 MIDI NOTE NUMBERS AND CENTER FREQUENCIES 。在这些音里面很多音符是几乎不会出现在真实的音乐中的。为了使得到的矩阵更为稠密,在处理的过程中忽略了过大和过小的数值,只提取了数值在24-108的音符,即C1-C8这84个音高,基本上与钢琴的音域相同。
- 最后,同样为了矩阵更为稠密,提高训练效果,我将除去鼓轨外的所有乐器音轨合成到一起,统一记录音符,而不区分乐器种类。
考虑到以上三点,根据每一个MIDI文件得到的矩阵形式即[包含的四小节乐段数*1*64*84]。为了降低空间占用,保存在文件中的信息是矩阵中每一个非零点的坐标信息,后面可以通过这些坐标来构建稀疏矩阵。
合并某个风格的所有稀疏矩阵
通过上一步,我们已经将MIDI文件中的音乐信息以稀疏矩阵坐标的形式存储在了单独的npz文件中,为了方便构造数据集,我尝试将每个风格的所有稀疏矩阵统一存储。
代码详见 MusicCritique/util/data/create_database.py
def merge_all_sparse_matrices():midi_collection = get_midi_collection()genre_collection = get_genre_collection()root_dir = 'E:/midi_matrix/one_instr/'time_step = 64valid_range = (24, 108)for genre in genre_collection.find({'DatasetGenerated': False}):save_dir = 'd:/data/' + genre['Name']if not os.path.exists(save_dir):os.mkdir(save_dir)print(genre['Name'])whole_length = genre['ValidPiecesNum']shape = np.array([whole_length, time_step, valid_range[1]-valid_range[0]])processed = 0last_piece_num = 0whole_num = midi_collection.count({'Genre': genre['Name']})non_zeros = []for midi in midi_collection.find({'Genre': genre['Name']}, no_cursor_timeout=True):path = root_dir + genre['Name'] + '/' + midi['md5'] + '.npz'valid_pieces_num = midi['PiecesNum'] - 1f = np.load(path)matrix = f['arr_0'].copy()print(valid_pieces_num, matrix.shape[0])for data in matrix:try:data = data.tolist()if data[0] < valid_pieces_num:piece_order = last_piece_num + data[0]non_zeros.append([piece_order, data[1], data[2]])except:print(path)last_piece_num += valid_pieces_numprocessed += 1print('Progress: {:.2%}\n'.format(processed / whole_num))non_zeros = np.array(non_zeros)print(non_zeros.shape)np.savez_compressed(save_dir + '/data_sparse' + '.npz', nonzeros=non_zeros, shape=shape)genre_collection.update_one({'_id': genre['_id']}, {'$set': {'DatasetGenerated': True}})
这个函数中genre的ValidPiecesNum域是之前添加的,意义是某一类的所有MIDI文件的四小节数目之和,并从这之中扣除了最后不满一小节的部分。
将稀疏矩阵转化为矩阵
由于所有的非零的坐标信息已经保存在了npz文件中,通过遍历这些坐标信息并将这些坐标点的数值设置为1.0,就可以得到矩阵。
def generate_sparse_matrix_of_genre(genre):npy_path = 'D:/data/' + genre + '/data_sparse.npz'with np.load(npy_path) as f:shape = f['shape']data = np.zeros(shape, np.float_)nonzeros = f['nonzeros']for x in nonzeros:data[(x[0], x[1], x[2])] = 1.return data
继承Dataset类,编写自定义数据集
通过继承PyTorch的Dataset类,并对几个重要函数进行重写,参考官方文档
代码详见 MusicCritique/util/data/dataset.py
class SteelyDataset(data.Dataset):def __init__(self, genreA, genreB, phase, use_mix):assert phase in ['train', 'test'], 'not valid dataset type'sources = ['metal', 'punk', 'folk', 'newage', 'country', 'bluegrass']genre_collection = get_genre_collection()self.data_path = 'D:/data/'numA = genre_collection.find_one({'Name': genreA})['ValidPiecesNum']numB = genre_collection.find_one({'Name': genreB})['ValidPiecesNum']train_num = int(min(numA, numB) * 0.9)test_num = min(numA, numB) - train_numif phase is 'train':self.length = train_numif use_mix:dataA = np.expand_dims(generate_sparse_matrix_of_genre(genreA)[:self.length], 1)dataB = np.expand_dims(generate_sparse_matrix_of_genre(genreB)[:self.length], 1)mixed = generate_sparse_matrix_from_multiple_genres(sources)np.random.shuffle(mixed)data_mixed = np.expand_dims(mixed[:self.length], 1)self.data = np.concatenate((dataA, dataB, data_mixed), axis=1)else:dataA = np.expand_dims(generate_sparse_matrix_of_genre(genreA)[:self.length], 1)dataB = np.expand_dims(generate_sparse_matrix_of_genre(genreB)[:self.length], 1)self.data = np.concatenate((dataA, dataB), axis=1)else:self.length = test_numdataA = np.expand_dims(generate_sparse_matrix_of_genre(genreA)[:self.length], 1)dataB = np.expand_dims(generate_sparse_matrix_of_genre(genreB)[:self.length], 1)self.data = np.concatenate((dataA, dataB), axis=1)def __getitem__(self, index):return self.data[index, :, :, :]def __len__(self):return self.length
继承的重点是重写初始化函数、getitem函数和len函数。在构建数据库的时候,为了方便调用数据,我将dataA和dataB合并到了一起,并取较小数据集的数目来确定总体数据集数目,以保证两种数据大小一致,在这过程中使用了Numpy库中的expand_dims函数来增加维度,concatenate函数来把两个矩阵合并到新增的维度上。
数据集分享
大家需要的话可以通过 百度云 下载这一数据集,提取码:nsfi。如在使用过程中遇到问题,请在下面评论,感谢阅读!
这篇关于Python编曲实践(六):将MIDI文件转化成矩阵,继承PyTorch的Dataset类来构建数据集(附数据集网盘下载链接)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!