GEE数据集——美国大陆网格气候数据集PRISM 日数据集和月数据集

2024-04-22 10:20

本文主要是介绍GEE数据集——美国大陆网格气候数据集PRISM 日数据集和月数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

PRISM 日数据集和月数据集是由俄勒冈州立大学 PRISM 气候小组制作的美国大陆网格气候数据集。

网格是利用 PRISM(独立斜坡模型参数-海拔回归)开发的。PRISM 插值程序模拟了天气和气候随海拔高度的变化,并考虑了海岸效应、温度反常和可能造成雨影的地形障碍。站点数据来自全国各地的许多网络。更多信息,请参阅 PRISM 空间气候数据集说明。

PRISM气候小组开展了一系列项目,其中一些项目支持空间气候数据集的开发。由此产生的一系列数据集反映了项目目标的范围,需要不同的站点网络、建模技术和时空分辨率。 在可能的情况下,我们向公众提供这些数据集,有的是免费的,有的是收费的,这取决于提供数据集的规模和难度以及活动的资金情况。为了让用户做出明智的决定,选择最适合他们需要的数据集,本文件提供了目前可用的PRISM空间气候数据集的信息。我们还提供了汇总表供快速参考。我们首先概述了 PRISM 数据集,然后依次讨论每个数据集。

注释

警告:由于台站设备和位置变化、开放和关闭、观测时间不同以及使用相对较短的网络等非气候因素的影响,该数据集不应用于计算长达一个世纪的气候趋势。详情请参见数据集文档。
观测网络进行质量控制和发布站点数据需要时间。因此,PRISM 数据集要经过多次重新建模,直到六个月后才被视为永久数据集。可提供发布时间表。
如需使用该数据集的 30 弧秒(约 800 米)版本,请通过 prism-questions@nacse.org 与数据集提供者联系。

数据简介

Dataset Availability

1895-01-01T00:00:00Z–2024-02-01T00:00:00Z

Dataset Provider

PRISM / OREGONSTATE

Earth Engine Snippet

ee.ImageCollection("OREGONSTATE/PRISM/AN81m") 

波段属性

Resolution
4638.3 meters

Bands

NameUnitsMinMaxDescription
pptmm0*2639.82*

Monthly total precipitation (including rain and melted snow)

tmean°C-30.8*41.49*

Monthly average of daily mean temperature (calculated as (tmin+tmax)/2)

tmin°C-35.11*34.72*

Monthly minimum temperature

tmax°C-29.8*49.74*

Monthly average of daily maximum temperature

tdmean°C-30.7*26.76*

Monthly average of daily mean dew point temperature

vpdminhPa0*44.79*

Monthly average of daily minimum vapor pressure deficit

vpdmaxhPa0.009*110.06*

Monthly average of daily maximum vapor pressure deficit

* estimated min or max value

影像属性

NameTypeDescription
PRISM_CODE_VERSIONSTRING_LIST

List of code versions per-band, e.g: the first element is for the first band "ppt", the second element is for the second band "tmean"

PRISM_DATASET_CREATE_DATESTRING_LIST

List of original creation dates per-band

PRISM_DATASET_FILENAMESTRING_LIST

List of original filenames for each band

PRISM_DATASET_TYPESTRING_LIST

List of dataset types per-band

PRISM_DATASET_VERSIONSTRING_LIST

List of dataset versions per-band e.g: D1 or D2 for daily products; M1, M2 or M3 for monthly products.

statusSTRING

Data generated within 30 days of observation have the status "early". Data generated within 1-6 months of observation may have the status "provisional" and data older than 6 months are marked as "permanent".

代码

var dataset = ee.ImageCollection('OREGONSTATE/PRISM/AN81m').filter(ee.Filter.date('2018-07-01', '2018-07-31'));
var precipitation = dataset.select('ppt');
var precipitationVis = {min: 0.0,max: 300.0,palette: ['red', 'yellow', 'green', 'cyan', 'purple'],
};
Map.setCenter(-100.55, 40.71, 4);
Map.addLayer(precipitation, precipitationVis, 'Precipitation');

使用说明

这些 PRISM 数据集的使用或分发不受限制。PRISM 气候组织要求用户适当注明出处,并在适用情况下指明 PRISM 为数据来源。

数据引用

  • Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, M.K., Taylor, G.H., Curtis, J., and Pasteris, P.A. 2008. Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States. International Journal of Climatology, 28: 2031-2064

  • [Daly, C., J.I. Smith, and K.V. Olson. 2015. Mapping atmospheric moisture climatologies across the conterminous United States. PloS ONE 10(10):e0141140. doi:10.1371/journal.pone.0141140

  •  网址推荐

  • 国内专业的气象监测网站

  • www.htdrought.com
  • 慧天干旱监测与预警平台:基于风云卫星和机器学习方法的大面积干旱监测、气象预警平台_慧天卓特公司-CSDN博客
  • 0代码在线构建地图应用

    Mapmost login

    机器学习

    https://www.cbedai.net/xg 

这篇关于GEE数据集——美国大陆网格气候数据集PRISM 日数据集和月数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/925524

相关文章

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE