poj 两道简单线段树 3264 3468

2024-04-22 06:08
文章标签 简单 poj 线段 3264 两道 3468

本文主要是介绍poj 两道简单线段树 3264 3468,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3264

http://poj.org/problem?id=3264

Balanced Lineup
Time Limit: 5000MS
Memory Limit: 65536K
Total Submissions: 46287
Accepted: 21709
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q.
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

Output

Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0


分析:裸的线段树和st的题,给你一个序列然后区间询问
给出三段代码:
第一段:st算法
/** rmp_st.cpp**  Created on: 2016年3月4日*      Author: Triose*/
#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<iterator>
#include<math.h>
#include<stdlib.h>
#include<map>
#include<set>
using namespace std;
//#define ONLINE_JUDGE
#define eps 1e-8
#define INF 0x7fffffff
#define inf 0x3f3f3f3f
#define rep(i,a) for((i)=0; i<(a);(i)++)
#define mem(a,b) (memset((a),b,sizeof(a)))
#define sf(a) scanf("%d",&a)
#define sfI(a) scanf("%I64d",&a)
#define sfd(a,b) scanf("%d%d",&a,&b)
#define sft(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define sfs(a) scanf("%s",a)
#define pf(a) printf("%d\n",a)
#define pfs(a) printf("%s\n",a)
#define pfI(a) printf("%I64d\n",a)
#define LL __int64
const double PI = acos(-1.0);
template<class T> T gcd(T a, T b) { return b ? gcd(b, a%b) : a; }
template<class T> T lcm(T a, T b) { return a / gcd(a, b)*b; }
template<class T> inline T Min(T a, T b) { return a < b ? a : b; }
template<class T> inline T Max(T a, T b) { return a > b ? a : b; }
int n, m;
int x, y;
#define N 50000
struct node {int max_num;int min_num;
};
node dp[N][20];
int a[N];
void Init() {int high = (int)log2(n * 1.0) + 1;for(int j = 1; j < high; j++) {int k = 1 << (j - 1);for(int i = 1; i + k <= n; i++) {dp[i][j].max_num = Max(dp[i][j - 1].max_num,dp[i + k][j - 1].max_num);dp[i][j].min_num = Min(dp[i][j - 1].min_num,dp[i + k][j - 1].min_num);}}
}
int main() {
#ifndef ONLINE_JUDGE
//	freopen("in.txt","r",stdin);
//	freopen("Out.txt", "w", stdout);
#endifwhile(~sfd(n,m)) {for(int i = 1; i <= n; i++) {sf(a[i]);dp[i][0].max_num = a[i];dp[i][0].min_num = a[i];}Init();for(int i = 0; i < m; i++) {sfd(x,y);int k = (int)log2(y - x + 1.0);pf(Max(dp[x][k].max_num,dp[y - (1 << k) + 1][k].max_num) - Min(dp[x][k].min_num,dp[y - (1 << k) + 1][k].min_num));}}return 0;
}

第二段:线段树的数组实现
#include <iostream>
#include <stdio.h>
using namespace std;
const int INF = 0xffffff0;
int minV = INF;
int maxV = -INF;
struct Node //不要左右子节点指针的做法
{int L, R;int minV,maxV;int Mid() {return (L+R)/2;}
};
Node tree[800010]; //4倍叶子节点的数量就够void BuildTree(int root , int L, int R)
void BuildTree(int root, int L, int R)
{tree[root].L = L;tree[root].R = R;tree[root].minV = INF;tree[root].maxV = - INF;if( L != R ) {BuildTree(2*root+1,L,(L+R)/2);BuildTree(2*root+2,(L+R)/2 + 1, R);}
}
void Insert(int root, int i,int v)
//将第i个数,其值为v,插入线段树
{if( tree[root].L == tree[root].R ) {
//成立则亦有 tree[root].R == itree[root].minV = tree[root].maxV = v;return;}tree[root].minV = min(tree[root].minV,v);tree[root].maxV = max(tree[root].maxV,v);if( i <= tree[root].Mid() )Insert(2*root+1,i,v);elseInsert(2*root+2,i,v);
}
void Query(int root,int s,int e) {
//查询区间[s,e]中的最小值和最大值,如果更优就记在全局变量里
//minV和maxV里
if( tree[root].minV >= minV && tree[root].maxV <= maxV )return;
if( tree[root].L == s && tree[root].R == e ) {minV = min(minV,tree[root].minV);maxV = max(maxV,tree[root].maxV);return ;}if( e <= tree[root].Mid())Query(2*root+1,s,e);else if( s > tree[root].Mid() )Query(2*root+2,s,e);else {Query(2*root+1,s,tree[root].Mid());Query(2*root+2,tree[root].Mid()+1,e);}
}
int main()
{int n,q,h;int i,j,k;scanf("%d%d",&n,&q);BuildTree(0,1,n);for( i = 1;i <= n;i ++ ) {scanf("%d",&h);Insert(0,i,h);}for( i = 0;i < q;i ++ ) {int s,e;scanf("%d%d", &s,&e);minV = INF;maxV = -INF;Query(0,s,e);printf("%d\n",maxV - minV);}return 0;
}

第三段:线段树的指针实现:
/*************************************************************************> File Name: p3264.cpp> Author: Triose> Mail: Triose@163.com > Created Time: 2016年07月26日 星期二 08时58分17秒************************************************************************///#include<bits/stdc++.h>
#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<iterator>
#include<math.h>
#include<stdlib.h>
#include<time.h>
#include<map>
#include<set>
using namespace std;
//#define ONLINE_JUDGE
#define eps 1e-8
#define inf 0x3f3f3f3f
#define INF 0x7fffffff
#define INFL 0x3f3f3f3f3f3f3f3fLL
#define enter putchar(10)
#define rep(i,a,b) for(int i = (a); i < (b); ++i)
#define repe(i,a,b) for(int i = (a); i <= (b); ++i)
#define mem(a,b) (memset((a),b,sizeof(a)))
#define sf(a) scanf("%d",&a)
#define sfI(a) scanf("%I64d",&a)
#define sfd(a,b) scanf("%d%d",&a,&b)
#define sft(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define sfs(a) scanf("%s",a)
#define pf(a) printf("%d\n",a)
#define pfd(a,b) printf("%d %d\n",a,b)
#define pfP(a) printf("%d %d\n",a.fi,a.se)
#define pfs(a) printf("%s\n",a)
#define pfI(a) printf("%I64d\n",a)
#define ds(a) int a; sf(a)
#define PR(a,b) pair<a,b>
#define fi first
#define se second
#define LL long long
#define DB double
const double PI = acos(-1.0);
const double E = exp(1.0);
template<class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template<class T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
template<class T> inline T Min(T a, T b) { return a < b ? a : b; }
template<class T> inline T Max(T a, T b) { return a > b ? a : b; }
int n, m;
#define N 200010
int maxq, minq;
int a[N];
struct Elmt {int s, e;int maxn, minn;Elmt * left, * right;Elmt(int s, int e) {this->s = s; this->e = e;this->maxn = -1; this->minn = INF;left = NULL; right = NULL;}
};
Elmt * tree;
void build(Elmt * elmt) {if(elmt->s == elmt->e) {elmt->maxn = a[elmt->s];elmt->minn = a[elmt->e];return ;}else {int mid = (elmt->s + elmt->e) >> 1;if(!elmt->left)elmt->left = new Elmt(elmt->s, mid);else {elmt->left->s = elmt->s; elmt->left->e = mid;}if(!elmt->right)elmt->right = new Elmt(mid + 1, elmt->e);else {elmt->right->s = mid + 1; elmt->right->e = elmt->e;}build(elmt->left); build(elmt->right);elmt->maxn = Max(elmt->left->maxn, elmt->right->maxn);elmt->minn = Min(elmt->left->minn, elmt->right->minn);return ;}
}
void collapse(Elmt * elmt) {if(!elmt) return ;collapse(elmt->left);collapse(elmt->right);delete elmt;return ;
}void query(Elmt * elmt, int s, int e) {if(elmt->s == s && elmt->e == e) {maxq = Max(elmt->maxn, maxq);minq = Min(elmt->minn, minq);return ;}int mid = (elmt->s + elmt->e) >> 1;if(e <= mid) {query(elmt->left, s, e);}else if(s > mid) {query(elmt->right, s, e);}else {query(elmt->left, s, mid);query(elmt->right, mid + 1, e);}
}int main() {
#ifndef ONLINE_JUDGEfreopen("in.txt","r",stdin);
//  freopen("Out.txt", "w", stdout);
#endifwhile(~sfd(n, m)) {repe(i, 1, n) sf(a[i]);tree = new Elmt(1, n);build(tree);int l, r;while(m--) {sfd(l, r);maxq = -1; minq = INF;if(l == r) {pf(0);continue;}query(tree, l, r);pf((maxq - minq));}//collapse(tree);}return 0;
}

前两段效率都比较高,3000+ms的样子。第三段不知道为何4700ms,也懒得优化了




3468

http://poj.org/problem?id=3468

A Simple Problem with Integers
Time Limit: 5000MS
Memory Limit: 131072K
Total Submissions: 94413
Accepted: 29408
Case Time Limit: 2000MS

Description

You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.


分析:题目出了要询问[l, r]的和之外,还有对区间[l, r]进行的加操作。如果线段树结点仅保存区间的和那么询问的复杂度为O(log n) 而操作的效率为o(n * log n) 太慢了,所以在结点里增加一个名字叫 “增量” 的变量,表示该区间每一个数要增加的大小。那么就可以实现询问和加操作的效率都是O(n logn)(每次加操作,不把值直接加到对应区间的数上面取,而是加到对应区间的增量上去,这样操作后该区间的和就为 (r - l + 1) * add) 注意维护sum 和 add!

代码:

/*************************************************************************> File Name: 3468.cpp> Author: Triose> Mail: Triose@163.com > Created Time: 2016年08月03日 星期三 16时35分43秒************************************************************************///#include<bits/stdc++.h>
#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<vector>
#include<queue>
#include<stack>
#include<iterator>
#include<math.h>
#include<stdlib.h>
#include<time.h>
#include<map>
#include<set>
using namespace std;
//#define ONLINE_JUDGE
#define eps 1e-8
#define inf 0x3f3f3f3f
#define INF 0x7fffffff
#define INFL 0x3f3f3f3f3f3f3f3fLL
#define enter putchar(10)
#define rep(i,a,b) for(int i = (a); i < (b); ++i)
#define repe(i,a,b) for(int i = (a); i <= (b); ++i)
#define mem(a,b) (memset((a),b,sizeof(a)))
#define sf(a) scanf("%d",&a)
#define sfI(a) scanf("%lld",&a)
#define sfd(a,b) scanf("%d%d",&a,&b)
#define sft(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define sfs(a) scanf("%s",a)
#define pf(a) printf("%d\n",a)
#define pfd(a,b) printf("%d %d\n",a,b)
#define pfP(a) printf("%d %d\n",a.fi,a.se)
#define pfs(a) printf("%s\n",a)
#define pfI(a) printf("%lld\n",a)
#define ds(a) int a; sf(a)
#define PR(a,b) pair<a,b>
#define fi first
#define se second
#define LL long long
#define DB double
const double PI = acos(-1.0);
const double E = exp(1.0);
template<class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template<class T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
template<class T> inline T Min(T a, T b) { return a < b ? a : b; }
template<class T> inline T Max(T a, T b) { return a > b ? a : b; }
int n, m;
#define N 100010
LL a[N];
struct Elmt {int l, r;LL sum;LL add;Elmt() {l = 0; r = 0;sum = 0;add = 0;}
};
Elmt tree[N * 4];
void Build(int root, int s, int e) {if(s == e) {tree[root].l = tree[root].r = s;tree[root].sum = a[s]; tree[root].add = 0;return ;}tree[root].l = s; tree[root].r = e;int mid = (s + e) >> 1;Build(root * 2 + 1, s, mid);Build(root * 2 + 2, mid + 1, e);tree[root].sum = tree[root * 2 + 1].sum + tree[root * 2 + 2].sum;tree[root].add = 0;return ;
}
void Adto(int root, int s, int e, LL dter) {if(tree[root].l == s && tree[root].r == e) {tree[root].add += dter;return ;}tree[root].sum += dter * (e - s + 1);//注意维护sum!int mid = (tree[root].l + tree[root].r) >> 1;if(e <= mid) {Adto(root * 2 + 1, s, e, dter);}else if(s > mid) {Adto(root * 2 + 2, s, e, dter);}else {Adto(root * 2 + 1, s, mid, dter);Adto(root * 2 + 2, mid + 1, e, dter);}
}
LL Query(int root, int s, int e) {if(tree[root].l == s && tree[root].r == e) {return tree[root].sum + (tree[root].r - tree[root].l + 1) * tree[root].add;}//注意应该返回的是sum还是sum + add 还是 sum + len * add!tree[root * 2 + 1].add += tree[root].add;//把add往下带一层,更新本层的sum和addtree[root * 2 + 2].add += tree[root].add;tree[root].sum += ((tree[root].r - tree[root].l + 1) * tree[root].add);tree[root].add = 0;int mid = (tree[root].l + tree[root].r) >> 1;if(e <= mid) {return Query(root * 2 + 1, s, e);}else if(s > mid) {return Query(root * 2 + 2, s, e);}else {return Query(root * 2 + 1, s, mid) + Query(root * 2 + 2, mid + 1, e);}
}
char order[5];
int s, e;
int main() {
#ifndef ONLINE_JUDGEfreopen("in.txt","r",stdin);
//  freopen("Out.txt", "w", stdout);
#endifwhile(~sfd(n, m)) {repe(i, 1, n) sfI(a[i]);Build(0, 1, n);while(m--) {scanf("%s%d%d", order, &s, &e);if(order[0] == 'Q') {pfI(Query(0, s, e));}else {LL dter; sfI(dter);Adto(0, s, e, dter);}}}return 0;
}



这篇关于poj 两道简单线段树 3264 3468的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924974

相关文章

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

如何使用Python实现一个简单的window任务管理器

《如何使用Python实现一个简单的window任务管理器》这篇文章主要为大家详细介绍了如何使用Python实现一个简单的window任务管理器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 任务管理器效果图完整代码import tkinter as tkfrom tkinter i

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav