分类神经网络3:DenseNet模型复现

2024-04-22 03:20

本文主要是介绍分类神经网络3:DenseNet模型复现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

DenseNet网络架构

DenseNet部分实现代码


DenseNet网络架构

论文原址:https://arxiv.org/pdf/1608.06993.pdf

稠密连接神经网络(DenseNet)实质上是ResNet的进阶模型(了解ResNet模型请点击),二者均是通过建立前面层与后面层之间的“短路连接”,但不同的是,DenseNet建立的是前面所有层与后面层的密集连接,其一大特点是通过特征在通道上的连接来实现特征重用,这让DenseNet在参数和计算成本更少的情形下实现比ResNet更优的性能。DenseNet 网络的模型结构如下:

DenseNet 的网络结构主要由DenseBlockTransition Layer组成。

DenseBlock:密集连接机制。互相连接所有的层,即每一层的输入都来自于它前面所有层的特征图,每一层的输出均会直接连接到它后面所有层的输入,这可以实现特征重用(即对不同“级别”的特征——不同表征进行总体性地再探索),提升效率。具体的连接方式如下图示:

在同一个DenseBlock当中,特征层的高宽不会发生改变,但是通道数会发生改变可以看出DenseBlock中采用了BN+ReLU+Conv的结构,然而一般网络是用Conv+BN+ReLU的结构。这是由于卷积层的输入包含了它前面所有层的输出特征,它们来自不同层的输出,因此数值分布差异比较大,所以它们在输入到下一个卷积层时,必须先经过BN层将其数值进行标准化,然后再进行卷积操作。通常为了减少参数,一般还会先加一个1x1 卷积来减少参数量。所以DenseBlock中的每一层采用BN+ReLU+1x1Conv 、Conv+BN+ReLU+3x3 Conv的结构。

Transition Layer:用于将不同DenseBlock之间进行连接,整合上一个DenseBlock获得的特征,并且缩小上一个DenseBlock的宽高,达到下采样的效果,实质上起到压缩模型的作用。Transition Layer中一般包含一个1x1卷积(用于调整通道数)和2x2平均池化(用于降低特征图大小),结构为BN+ReLU+1x1 Conv+2x2 AvgPooling

DenseNet网络的具体配置信息如下:

可以看出,一个DenseNet中一般有3个或4个DenseBlock,最后的DenseBlock后连接了一个最大池化层,然后是一个包含1000个类别的全连接层,通过softmax激活函数得到类别属性。

DenseNet部分实现代码

直接上干货

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from collections import OrderedDict__all__ = ["densenet121", "densenet161", "densenet169", "densenet201"]class DenseLayer(nn.Module):def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, memory_efficient = False):super(DenseLayer,self).__init__()self.norm1 = nn.BatchNorm2d(num_input_features)self.relu1 = nn.ReLU(inplace=True)self.conv1 = nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)self.norm2 = nn.BatchNorm2d(bn_size * growth_rate)self.relu2 = nn.ReLU(inplace=True)self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)self.drop_rate = float(drop_rate)self.memory_efficient = memory_efficientdef bn_function(self, inputs):concated_features = torch.cat(inputs, 1)bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features)))return bottleneck_outputdef any_requires_grad(self, input):for tensor in input:if tensor.requires_grad:return Truereturn False@torch.jit.unuseddef call_checkpoint_bottleneck(self, input):def closure(*inputs):return self.bn_function(inputs)return cp.checkpoint(closure, *input)def forward(self, input):if isinstance(input, torch.Tensor):prev_features = [input]else:prev_features = inputif self.memory_efficient and self.any_requires_grad(prev_features):if torch.jit.is_scripting():raise Exception("Memory Efficient not supported in JIT")bottleneck_output = self.call_checkpoint_bottleneck(prev_features)else:bottleneck_output = self.bn_function(prev_features)new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))if self.drop_rate > 0:new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)return new_featuresclass DenseBlock(nn.ModuleDict):def __init__(self,num_layers,num_input_features,bn_size,growth_rate,drop_rate,memory_efficient = False,):super(DenseBlock,self).__init__()for i in range(num_layers):layer = DenseLayer(num_input_features + i * growth_rate,growth_rate=growth_rate,bn_size=bn_size,drop_rate=drop_rate,memory_efficient=memory_efficient,)self.add_module("denselayer%d" % (i + 1), layer)def forward(self, init_features):features = [init_features]for name, layer in self.items():new_features = layer(features)features.append(new_features)return torch.cat(features, 1)class Transition(nn.Sequential):"""Densenet Transition Layer:1 × 1 conv2 × 2 average pool, stride 2"""def __init__(self, num_input_features, num_output_features):super(Transition,self).__init__()self.norm = nn.BatchNorm2d(num_input_features)self.relu = nn.ReLU(inplace=True)self.conv = nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)self.pool = nn.AvgPool2d(kernel_size=2, stride=2)class DenseNet(nn.Module):def __init__(self,growth_rate = 32,num_init_features = 64,block_config = None,num_classes = 1000,bn_size = 4,drop_rate = 0.,memory_efficient = False,):super(DenseNet,self).__init__()# First convolutionself.features = nn.Sequential(OrderedDict([("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),("norm0", nn.BatchNorm2d(num_init_features)),("relu0", nn.ReLU(inplace=True)),("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),]))# Each denseblocknum_features = num_init_featuresfor i, num_layers in enumerate(block_config):block = DenseBlock(num_layers=num_layers,num_input_features=num_features,bn_size=bn_size,growth_rate=growth_rate,drop_rate=drop_rate,memory_efficient=memory_efficient,)self.features.add_module("denseblock%d" % (i + 1), block)num_features = num_features + num_layers * growth_rateif i != len(block_config) - 1:trans = Transition(num_input_features=num_features, num_output_features=num_features // 2)self.features.add_module("transition%d" % (i + 1), trans)num_features = num_features // 2# Final batch normself.features.add_module("norm5", nn.BatchNorm2d(num_features))# Linear layerself.classifier = nn.Linear(num_features, num_classes)# Official init from torch repo.for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.constant_(m.bias, 0)def forward(self, x):features = self.features(x)out = F.relu(features, inplace=True)out = F.adaptive_avg_pool2d(out, (1, 1))out = torch.flatten(out, 1)out = self.classifier(out)return outdef densenet121(num_classes):"""Densenet-121 model"""return DenseNet(32, 64, (6, 12, 24, 16),num_classes=num_classes)def densenet161(num_classes):"""Densenet-161 model"""return DenseNet(48, 96, (6, 12, 36, 24),  num_classes=num_classes)def densenet169(num_classes):"""Densenet-169 model"""return DenseNet(32, 64, (6, 12, 32, 32),   num_classes=num_classes)def densenet201(num_classes):"""Densenet-201 model"""return DenseNet(32, 64, (6, 12, 48, 32), num_classes=num_classes)if __name__=="__main__":# from torchsummaryX import summarydevice = 'cuda' if torch.cuda.is_available() else 'cpu'input = torch.ones(2, 3, 224, 224).to(device)net = densenet121(num_classes=4)net = net.to(device)out = net(input)print(out)print(out.shape)# summary(net, torch.ones((1, 3, 224, 224)).to(device))

希望对大家能够有所帮助呀!

这篇关于分类神经网络3:DenseNet模型复现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924714

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU