分类神经网络3:DenseNet模型复现

2024-04-22 03:20

本文主要是介绍分类神经网络3:DenseNet模型复现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

DenseNet网络架构

DenseNet部分实现代码


DenseNet网络架构

论文原址:https://arxiv.org/pdf/1608.06993.pdf

稠密连接神经网络(DenseNet)实质上是ResNet的进阶模型(了解ResNet模型请点击),二者均是通过建立前面层与后面层之间的“短路连接”,但不同的是,DenseNet建立的是前面所有层与后面层的密集连接,其一大特点是通过特征在通道上的连接来实现特征重用,这让DenseNet在参数和计算成本更少的情形下实现比ResNet更优的性能。DenseNet 网络的模型结构如下:

DenseNet 的网络结构主要由DenseBlockTransition Layer组成。

DenseBlock:密集连接机制。互相连接所有的层,即每一层的输入都来自于它前面所有层的特征图,每一层的输出均会直接连接到它后面所有层的输入,这可以实现特征重用(即对不同“级别”的特征——不同表征进行总体性地再探索),提升效率。具体的连接方式如下图示:

在同一个DenseBlock当中,特征层的高宽不会发生改变,但是通道数会发生改变可以看出DenseBlock中采用了BN+ReLU+Conv的结构,然而一般网络是用Conv+BN+ReLU的结构。这是由于卷积层的输入包含了它前面所有层的输出特征,它们来自不同层的输出,因此数值分布差异比较大,所以它们在输入到下一个卷积层时,必须先经过BN层将其数值进行标准化,然后再进行卷积操作。通常为了减少参数,一般还会先加一个1x1 卷积来减少参数量。所以DenseBlock中的每一层采用BN+ReLU+1x1Conv 、Conv+BN+ReLU+3x3 Conv的结构。

Transition Layer:用于将不同DenseBlock之间进行连接,整合上一个DenseBlock获得的特征,并且缩小上一个DenseBlock的宽高,达到下采样的效果,实质上起到压缩模型的作用。Transition Layer中一般包含一个1x1卷积(用于调整通道数)和2x2平均池化(用于降低特征图大小),结构为BN+ReLU+1x1 Conv+2x2 AvgPooling

DenseNet网络的具体配置信息如下:

可以看出,一个DenseNet中一般有3个或4个DenseBlock,最后的DenseBlock后连接了一个最大池化层,然后是一个包含1000个类别的全连接层,通过softmax激活函数得到类别属性。

DenseNet部分实现代码

直接上干货

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from collections import OrderedDict__all__ = ["densenet121", "densenet161", "densenet169", "densenet201"]class DenseLayer(nn.Module):def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, memory_efficient = False):super(DenseLayer,self).__init__()self.norm1 = nn.BatchNorm2d(num_input_features)self.relu1 = nn.ReLU(inplace=True)self.conv1 = nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)self.norm2 = nn.BatchNorm2d(bn_size * growth_rate)self.relu2 = nn.ReLU(inplace=True)self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)self.drop_rate = float(drop_rate)self.memory_efficient = memory_efficientdef bn_function(self, inputs):concated_features = torch.cat(inputs, 1)bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features)))return bottleneck_outputdef any_requires_grad(self, input):for tensor in input:if tensor.requires_grad:return Truereturn False@torch.jit.unuseddef call_checkpoint_bottleneck(self, input):def closure(*inputs):return self.bn_function(inputs)return cp.checkpoint(closure, *input)def forward(self, input):if isinstance(input, torch.Tensor):prev_features = [input]else:prev_features = inputif self.memory_efficient and self.any_requires_grad(prev_features):if torch.jit.is_scripting():raise Exception("Memory Efficient not supported in JIT")bottleneck_output = self.call_checkpoint_bottleneck(prev_features)else:bottleneck_output = self.bn_function(prev_features)new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))if self.drop_rate > 0:new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)return new_featuresclass DenseBlock(nn.ModuleDict):def __init__(self,num_layers,num_input_features,bn_size,growth_rate,drop_rate,memory_efficient = False,):super(DenseBlock,self).__init__()for i in range(num_layers):layer = DenseLayer(num_input_features + i * growth_rate,growth_rate=growth_rate,bn_size=bn_size,drop_rate=drop_rate,memory_efficient=memory_efficient,)self.add_module("denselayer%d" % (i + 1), layer)def forward(self, init_features):features = [init_features]for name, layer in self.items():new_features = layer(features)features.append(new_features)return torch.cat(features, 1)class Transition(nn.Sequential):"""Densenet Transition Layer:1 × 1 conv2 × 2 average pool, stride 2"""def __init__(self, num_input_features, num_output_features):super(Transition,self).__init__()self.norm = nn.BatchNorm2d(num_input_features)self.relu = nn.ReLU(inplace=True)self.conv = nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)self.pool = nn.AvgPool2d(kernel_size=2, stride=2)class DenseNet(nn.Module):def __init__(self,growth_rate = 32,num_init_features = 64,block_config = None,num_classes = 1000,bn_size = 4,drop_rate = 0.,memory_efficient = False,):super(DenseNet,self).__init__()# First convolutionself.features = nn.Sequential(OrderedDict([("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),("norm0", nn.BatchNorm2d(num_init_features)),("relu0", nn.ReLU(inplace=True)),("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),]))# Each denseblocknum_features = num_init_featuresfor i, num_layers in enumerate(block_config):block = DenseBlock(num_layers=num_layers,num_input_features=num_features,bn_size=bn_size,growth_rate=growth_rate,drop_rate=drop_rate,memory_efficient=memory_efficient,)self.features.add_module("denseblock%d" % (i + 1), block)num_features = num_features + num_layers * growth_rateif i != len(block_config) - 1:trans = Transition(num_input_features=num_features, num_output_features=num_features // 2)self.features.add_module("transition%d" % (i + 1), trans)num_features = num_features // 2# Final batch normself.features.add_module("norm5", nn.BatchNorm2d(num_features))# Linear layerself.classifier = nn.Linear(num_features, num_classes)# Official init from torch repo.for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.constant_(m.bias, 0)def forward(self, x):features = self.features(x)out = F.relu(features, inplace=True)out = F.adaptive_avg_pool2d(out, (1, 1))out = torch.flatten(out, 1)out = self.classifier(out)return outdef densenet121(num_classes):"""Densenet-121 model"""return DenseNet(32, 64, (6, 12, 24, 16),num_classes=num_classes)def densenet161(num_classes):"""Densenet-161 model"""return DenseNet(48, 96, (6, 12, 36, 24),  num_classes=num_classes)def densenet169(num_classes):"""Densenet-169 model"""return DenseNet(32, 64, (6, 12, 32, 32),   num_classes=num_classes)def densenet201(num_classes):"""Densenet-201 model"""return DenseNet(32, 64, (6, 12, 48, 32), num_classes=num_classes)if __name__=="__main__":# from torchsummaryX import summarydevice = 'cuda' if torch.cuda.is_available() else 'cpu'input = torch.ones(2, 3, 224, 224).to(device)net = densenet121(num_classes=4)net = net.to(device)out = net(input)print(out)print(out.shape)# summary(net, torch.ones((1, 3, 224, 224)).to(device))

希望对大家能够有所帮助呀!

这篇关于分类神经网络3:DenseNet模型复现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924714

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行