一种简单的贝塞尔插值算法

2024-04-22 01:38

本文主要是介绍一种简单的贝塞尔插值算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载地址:http://www.antigrain.com/research/bezier_interpolation/index.html#PAGE_BEZIER_INTERPOLATION

Interpolation with Bezier Curves
A very simple method of smoothing polygons

Initially, there was a question in comp.graphic.algorithms how to interpolate a polygon with a curve in such a way that the resulting curve would be smooth and hit all its vertices. Gernot Hoffmann suggested to use a well-known  B-Spline interpolation. Here is his original article. B-Spline works good and it behaves like an elastic ruler fixed in the polygon vertices.

 

 

But I had a gut feeling that there must be a simpler method. For example, approximation with cubic Bezier curves. A Bezier curve has two anchor points (begin and end) and two control ones (CP) that determine its shape. More information about Bezier curves can be found using any search engine, for example, on Paul Bourke's excellent site. Our anchor points are given, they are pair of vertices of the polygon. The question was, how to calculate the control points. I ran  Xara X and drew this picture. It was pretty easy and I decided to try to calculate their coordinates. It was obvious that the control points of two adjacent edges plus the vertex between them should form one straight line. Only in this case the two adjacent curves will be connected smoothly. So, the two CP should be the a reflection of each other, but… not quite. Reflection assumes equal distances from the central point. For our case it's not correct. First, I tried to calculate a bisectrix between two edges and then take points on the perpendicular to it. But as shown in the picture, the CP not always lie on the perpendicular to thebisectrix.

 

Finally, I found a very simple method that does not require any complicated math. First, we take the polygon and calculate the middle points Ai of its edges.

 

Here we have line segments Ci that connect two points Aiof the adjacent segments. Then, we should calculate points Bi as shown in this picture.

 

The third step is final. We simply move the line segments Ci in such a way that their points Bicoincide with the respective vertices. That's it, we calculated the control points for our Bezier curve and the result looks good.

 

One little improvement. Since we have a straight line that determines the place of our control points, we can move them as we want, changing the shape of the resulting curve. I used a simple coefficient K that moves the points along the line relatively to the initial distance between vertices and control points. The closer the control points to the vertices are the sharper figure will be obtained.

 

Below is the result of rendering a popular in SVG lion in its original form and with Bezier interpolation with K=1.0

 

 

And the enlarged ones.

 

 

The method works quite well with self-intersecting polygons. The examples below show that the result is pretty interesting.


 

 

 

This method is pure heuristic and empiric. It probably gives a wrong result from the point of view of strict mathematical modeling. But in practice the result is good enough and it requires absolute minimum of calculations. Below is the source code that has been used to generate the lions shown above. It's not optimal and just an illustration. It calculates some variables twice, while in real programs we can store and reuse them in the consecutive steps.

    // Assume we need to calculate the control// points between (x1,y1) and (x2,y2).// Then x0,y0 - the previous vertex,//      x3,y3 - the next one.double xc1 = (x0 + x1) / 2.0;double yc1 = (y0 + y1) / 2.0;double xc2 = (x1 + x2) / 2.0;double yc2 = (y1 + y2) / 2.0;double xc3 = (x2 + x3) / 2.0;double yc3 = (y2 + y3) / 2.0;double len1 = sqrt((x1-x0) * (x1-x0) + (y1-y0) * (y1-y0));double len2 = sqrt((x2-x1) * (x2-x1) + (y2-y1) * (y2-y1));double len3 = sqrt((x3-x2) * (x3-x2) + (y3-y2) * (y3-y2));double k1 = len1 / (len1 + len2);double k2 = len2 / (len2 + len3);double xm1 = xc1 + (xc2 - xc1) * k1;double ym1 = yc1 + (yc2 - yc1) * k1;double xm2 = xc2 + (xc3 - xc2) * k2;double ym2 = yc2 + (yc3 - yc2) * k2;// Resulting control points. Here smooth_value is mentioned// above coefficient K whose value should be in range [0...1].ctrl1_x = xm1 + (xc2 - xm1) * smooth_value + x1 - xm1;ctrl1_y = ym1 + (yc2 - ym1) * smooth_value + y1 - ym1;ctrl2_x = xm2 + (xc2 - xm2) * smooth_value + x2 - xm2;ctrl2_y = ym2 + (yc2 - ym2) * smooth_value + y2 - ym2;



And the source code of an approximation with a cubic Bezier curve.

// Number of intermediate points between two source ones,
// Actually, this value should be calculated in some way,
// Obviously, depending on the real length of the curve.
// But I don't know any elegant and fast solution for this
// problem.
#define NUM_STEPS 20void curve4(Polygon* p,double x1, double y1,   //Anchor1double x2, double y2,   //Control1double x3, double y3,   //Control2double x4, double y4)   //Anchor2
{double dx1 = x2 - x1;double dy1 = y2 - y1;double dx2 = x3 - x2;double dy2 = y3 - y2;double dx3 = x4 - x3;double dy3 = y4 - y3;double subdiv_step  = 1.0 / (NUM_STEPS + 1);double subdiv_step2 = subdiv_step*subdiv_step;double subdiv_step3 = subdiv_step*subdiv_step*subdiv_step;double pre1 = 3.0 * subdiv_step;double pre2 = 3.0 * subdiv_step2;double pre4 = 6.0 * subdiv_step2;double pre5 = 6.0 * subdiv_step3;double tmp1x = x1 - x2 * 2.0 + x3;double tmp1y = y1 - y2 * 2.0 + y3;double tmp2x = (x2 - x3)*3.0 - x1 + x4;double tmp2y = (y2 - y3)*3.0 - y1 + y4;double fx = x1;double fy = y1;double dfx = (x2 - x1)*pre1 + tmp1x*pre2 + tmp2x*subdiv_step3;double dfy = (y2 - y1)*pre1 + tmp1y*pre2 + tmp2y*subdiv_step3;double ddfx = tmp1x*pre4 + tmp2x*pre5;double ddfy = tmp1y*pre4 + tmp2y*pre5;double dddfx = tmp2x*pre5;double dddfy = tmp2y*pre5;int step = NUM_STEPS;// Suppose, we have some abstract object Polygon which// has method AddVertex(x, y), similar to LineTo in// many graphical APIs.// Note, that the loop has only operation add!while(step--){fx   += dfx;fy   += dfy;dfx  += ddfx;dfy  += ddfy;ddfx += dddfx;ddfy += dddfy;p->AddVertex(fx, fy);}p->AddVertex(x4, y4); // Last step must go exactly to x4, y4
}

You can download a working application for Windows that renders the lion, rotates and scales it, and generates random polygons. Interpolation with Bezier curves  (bezier_interpolation.zip). Press left mouse button and drag to rotate and scale the image around the center point. Press right mouse button and drag left-right to change the coefficient of smoothing (K). Value K=1 is about 100 pixels from the left border of the window. Each left double-click generates a random polygon. You can also rotate and scale it, and change K.

 
Copyright © 2002-2006 Maxim Shemanarev
Web Design and Programming Maxim Shemanarev

这篇关于一种简单的贝塞尔插值算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924541

相关文章

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何使用Python实现一个简单的window任务管理器

《如何使用Python实现一个简单的window任务管理器》这篇文章主要为大家详细介绍了如何使用Python实现一个简单的window任务管理器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 任务管理器效果图完整代码import tkinter as tkfrom tkinter i

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链