【抽代复习笔记】13-群(七):变换群引理

2024-04-21 22:04

本文主要是介绍【抽代复习笔记】13-群(七):变换群引理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引理:考虑等边三角形123——

12ff8ed037194c929fe209c9b0e07810.png

这个等边三角形的对称性可用(1),(12),(13),(23),(123),(132)表示,其中:

(1)表示这个等边三角形绕着其中心点旋转360°/720°/.../360°×n,得到的图形与原图形完全重合的旋转对称变换;

(12)表示这个等边三角形绕过点3、垂直于边12的对称轴翻转180°/540°/.../180°+360°×n,得到的图形与原图形相比,刚好点1与点2位置对调、其余不变的轴对称变换;

(13)表示这个等边三角形绕过点2、垂直于边13的对称轴翻转180°/540°/.../180°+360°×n,得到的图形与原图形相比,刚好点1与点3位置对调、其余不变的轴对称变换;

(23)表示这个等边三角形绕过点1、垂直于边23的对称轴翻转180°/540°/.../180°+360°×n,得到的图形与原图形相比,刚好点2与点3位置对调、其余不变的轴对称变换;

(123)表示这个等边三角形绕着其中心逆时针旋转120°/480°/.../120°+360°×n,得到的图形与原图形相比,点1移动到点2、点2移动到点3、点3移动到点1的旋转对称变换;

(132)表示这个等边三角形绕着其中心顺时针旋转120°/480°/.../120°+360°×n,得到的图形与原图形相比,点1移动到点3、点3移动到点2、点2移动到点1的旋转对称变换。

它们同时也是集合A = {1,2,3}上所有一一变换的全体,设S₃ = {(1),(12),(13),(23),(123),(132)},那么S₃关于变换的乘法(或者说“复合”)作成一个非交换群。

证:①(1)(12) = (12)(1) = (12)∈S₃,(1)(13) = (13)(1) = (13)∈S₃,(1)(23) = (23)(1) = (23)∈S₃,(1)(123) = (123)(1) = (123)∈S₃,(1)(132) = (132)(1) = (132)∈S₃,

(12)(13) = (123)∈S₃(按从右往左的顺序),(13)(12) = (132)∈S₃,(12)(23) = (123)∈S₃,(23)(12) = (132)∈S₃,(12)(123) = (23)∈S₃,(123)(12) = (13)∈S₃,

……

按类似的方法不断进行下去,终可得对任意的a,b∈S₃,都有a o b∈S₃,因此满足群公理第一条的封闭性,且由上面的计算可知,并非所有的a,b∈S₃,都有a o b = b o a,因此o是不可交换的;

②由于任意的a∈S₃是一个一一变换,而一一变换的乘法(或者说“复合”)是适合结合律的,因此也满足群公理的第二条;

③在S₃中,任意的a∈S₃,都有(1)a = a,因此(1)就是S₃中的单位元,因此也满足了群公理的第四条;

④在S₃中,(1)(1) = (1),因此(1)的逆元是它本身,(12)(12) = (13)(13) = (23)(23) = (1),因此(12),(13),(23)的逆元都分别是它们自身,而(123)(132) = (1),因此(123)与(132)互为逆元,因此S₃中的每一个元素都存在各自的逆元,所以也满足了群公理的第五条。

因此,由群的第二定义我们可知,S₃关于变换的乘法(或者说“复合”)作成一个非交换群,命题得证。

 

(待续……)

 

 

这篇关于【抽代复习笔记】13-群(七):变换群引理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924142

相关文章

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个