政安晨:【Keras机器学习示例演绎】(五)—— 利用视觉变换器进行物体检测

本文主要是介绍政安晨:【Keras机器学习示例演绎】(五)—— 利用视觉变换器进行物体检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

导言

导入和设置

准备数据集

实施多层感知器(MLP)

实施补丁创建层

显示输入图像的补丁

实施补丁编码层

构建 ViT 模型

运行实验

评估模型


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:使用视觉变换器进行物体检测的简单 Keras 实现。

导言


Alexey Dosovitskiy 等人撰写的文章 Vision Transformer (ViT) 架构表明,直接应用于图像片段序列的纯变换器可以很好地完成物体检测任务。

在本 Keras 示例中,我们实现了对象检测 ViT,并在 Caltech 101 数据集上对其进行训练,以检测给定图像中的飞机。

导入和设置

import osos.environ["KERAS_BACKEND"] = "jax"  # @param ["tensorflow", "jax", "torch"]import numpy as np
import keras
from keras import layers
from keras import ops
import matplotlib.pyplot as plt
import numpy as np
import cv2
import os
import scipy.io
import shutil

准备数据集

我们使用加州理工学院 101 数据集。

# Path to images and annotations
path_images = "./101_ObjectCategories/airplanes/"
path_annot = "./Annotations/Airplanes_Side_2/"path_to_downloaded_file = keras.utils.get_file(fname="caltech_101_zipped",origin="https://data.caltech.edu/records/mzrjq-6wc02/files/caltech-101.zip",extract=True,archive_format="zip",  # downloaded file formatcache_dir="/",  # cache and extract in current directory
)
download_base_dir = os.path.dirname(path_to_downloaded_file)# Extracting tar files found inside main zip file
shutil.unpack_archive(os.path.join(download_base_dir, "caltech-101", "101_ObjectCategories.tar.gz"), "."
)
shutil.unpack_archive(os.path.join(download_base_dir, "caltech-101", "Annotations.tar"), "."
)# list of paths to images and annotations
image_paths = [f for f in os.listdir(path_images) if os.path.isfile(os.path.join(path_images, f))
]
annot_paths = [f for f in os.listdir(path_annot) if os.path.isfile(os.path.join(path_annot, f))
]image_paths.sort()
annot_paths.sort()image_size = 224  # resize input images to this sizeimages, targets = [], []# loop over the annotations and images, preprocess them and store in lists
for i in range(0, len(annot_paths)):# Access bounding box coordinatesannot = scipy.io.loadmat(path_annot + annot_paths[i])["box_coord"][0]top_left_x, top_left_y = annot[2], annot[0]bottom_right_x, bottom_right_y = annot[3], annot[1]image = keras.utils.load_img(path_images + image_paths[i],)(w, h) = image.size[:2]# resize imagesimage = image.resize((image_size, image_size))# convert image to array and append to listimages.append(keras.utils.img_to_array(image))# apply relative scaling to bounding boxes as per given image and append to listtargets.append((float(top_left_x) / w,float(top_left_y) / h,float(bottom_right_x) / w,float(bottom_right_y) / h,))# Convert the list to numpy array, split to train and test dataset
(x_train), (y_train) = (np.asarray(images[: int(len(images) * 0.8)]),np.asarray(targets[: int(len(targets) * 0.8)]),
)
(x_test), (y_test) = (np.asarray(images[int(len(images) * 0.8) :]),np.asarray(targets[int(len(targets) * 0.8) :]),
)

实施多层感知器(MLP)

我们使用 Keras 示例 "使用视觉转换器进行图像分类 "中的代码作为参考。

def mlp(x, hidden_units, dropout_rate):for units in hidden_units:x = layers.Dense(units, activation=keras.activations.gelu)(x)x = layers.Dropout(dropout_rate)(x)return x

实施补丁创建层

class Patches(layers.Layer):def __init__(self, patch_size):super().__init__()self.patch_size = patch_sizedef call(self, images):input_shape = ops.shape(images)batch_size = input_shape[0]height = input_shape[1]width = input_shape[2]channels = input_shape[3]num_patches_h = height // self.patch_sizenum_patches_w = width // self.patch_sizepatches = keras.ops.image.extract_patches(images, size=self.patch_size)patches = ops.reshape(patches,(batch_size,num_patches_h * num_patches_w,self.patch_size * self.patch_size * channels,),)return patchesdef get_config(self):config = super().get_config()config.update({"patch_size": self.patch_size})return config

显示输入图像的补丁

patch_size = 32  # Size of the patches to be extracted from the input imagesplt.figure(figsize=(4, 4))
plt.imshow(x_train[0].astype("uint8"))
plt.axis("off")patches = Patches(patch_size)(np.expand_dims(x_train[0], axis=0))
print(f"Image size: {image_size} X {image_size}")
print(f"Patch size: {patch_size} X {patch_size}")
print(f"{patches.shape[1]} patches per image \n{patches.shape[-1]} elements per patch")n = int(np.sqrt(patches.shape[1]))
plt.figure(figsize=(4, 4))
for i, patch in enumerate(patches[0]):ax = plt.subplot(n, n, i + 1)patch_img = ops.reshape(patch, (patch_size, patch_size, 3))plt.imshow(ops.convert_to_numpy(patch_img).astype("uint8"))plt.axis("off")

演绎展示:

Image size: 224 X 224
Patch size: 32 X 32
49 patches per image 
3072 elements per patch

实施补丁编码层

PatchEncoder 层通过将补丁投影到大小为 projection_dim 的矢量中,对补丁进行线性变换。它还会在投影向量中添加可学习的位置嵌入。

class PatchEncoder(layers.Layer):def __init__(self, num_patches, projection_dim):super().__init__()self.num_patches = num_patchesself.projection = layers.Dense(units=projection_dim)self.position_embedding = layers.Embedding(input_dim=num_patches, output_dim=projection_dim)# Override function to avoid error while saving modeldef get_config(self):config = super().get_config().copy()config.update({"input_shape": input_shape,"patch_size": patch_size,"num_patches": num_patches,"projection_dim": projection_dim,"num_heads": num_heads,"transformer_units": transformer_units,"transformer_layers": transformer_layers,"mlp_head_units": mlp_head_units,})return configdef call(self, patch):positions = ops.expand_dims(ops.arange(start=0, stop=self.num_patches, step=1), axis=0)projected_patches = self.projection(patch)encoded = projected_patches + self.position_embedding(positions)return encoded

构建 ViT 模型


ViT 模型有多个变换器模块。

多头注意层(MultiHeadAttention)用于自注意,应用于图像补丁序列。编码补丁(跳过连接)和自我注意层的输出被归一化,并输入多层感知器(MLP)。

该模型输出代表物体边界框坐标的四个维度。

def create_vit_object_detector(input_shape,patch_size,num_patches,projection_dim,num_heads,transformer_units,transformer_layers,mlp_head_units,
):inputs = keras.Input(shape=input_shape)# Create patchespatches = Patches(patch_size)(inputs)# Encode patchesencoded_patches = PatchEncoder(num_patches, projection_dim)(patches)# Create multiple layers of the Transformer block.for _ in range(transformer_layers):# Layer normalization 1.x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)# Create a multi-head attention layer.attention_output = layers.MultiHeadAttention(num_heads=num_heads, key_dim=projection_dim, dropout=0.1)(x1, x1)# Skip connection 1.x2 = layers.Add()([attention_output, encoded_patches])# Layer normalization 2.x3 = layers.LayerNormalization(epsilon=1e-6)(x2)# MLPx3 = mlp(x3, hidden_units=transformer_units, dropout_rate=0.1)# Skip connection 2.encoded_patches = layers.Add()([x3, x2])# Create a [batch_size, projection_dim] tensor.representation = layers.LayerNormalization(epsilon=1e-6)(encoded_patches)representation = layers.Flatten()(representation)representation = layers.Dropout(0.3)(representation)# Add MLP.features = mlp(representation, hidden_units=mlp_head_units, dropout_rate=0.3)bounding_box = layers.Dense(4)(features)  # Final four neurons that output bounding box# return Keras model.return keras.Model(inputs=inputs, outputs=bounding_box)

运行实验

def run_experiment(model, learning_rate, weight_decay, batch_size, num_epochs):optimizer = keras.optimizers.AdamW(learning_rate=learning_rate, weight_decay=weight_decay)# Compile model.model.compile(optimizer=optimizer, loss=keras.losses.MeanSquaredError())checkpoint_filepath = "vit_object_detector.weights.h5"checkpoint_callback = keras.callbacks.ModelCheckpoint(checkpoint_filepath,monitor="val_loss",save_best_only=True,save_weights_only=True,)history = model.fit(x=x_train,y=y_train,batch_size=batch_size,epochs=num_epochs,validation_split=0.1,callbacks=[checkpoint_callback,keras.callbacks.EarlyStopping(monitor="val_loss", patience=10),],)return historyinput_shape = (image_size, image_size, 3)  # input image shape
learning_rate = 0.001
weight_decay = 0.0001
batch_size = 32
num_epochs = 100
num_patches = (image_size // patch_size) ** 2
projection_dim = 64
num_heads = 4
# Size of the transformer layers
transformer_units = [projection_dim * 2,projection_dim,
]
transformer_layers = 4
mlp_head_units = [2048, 1024, 512, 64, 32]  # Size of the dense layershistory = []
num_patches = (image_size // patch_size) ** 2vit_object_detector = create_vit_object_detector(input_shape,patch_size,num_patches,projection_dim,num_heads,transformer_units,transformer_layers,mlp_head_units,
)# Train model
history = run_experiment(vit_object_detector, learning_rate, weight_decay, batch_size, num_epochs
)def plot_history(item):plt.plot(history.history[item], label=item)plt.plot(history.history["val_" + item], label="val_" + item)plt.xlabel("Epochs")plt.ylabel(item)plt.title("Train and Validation {} Over Epochs".format(item), fontsize=14)plt.legend()plt.grid()plt.show()plot_history("loss")

演绎展示:

Epoch 1/10018/18 ━━━━━━━━━━━━━━━━━━━━ 9s 109ms/step - loss: 1.2097 - val_loss: 0.3468
Epoch 2/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - loss: 0.4260 - val_loss: 0.3102
Epoch 3/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - loss: 0.3268 - val_loss: 0.2727
Epoch 4/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - loss: 0.2815 - val_loss: 0.2391
Epoch 5/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - loss: 0.2290 - val_loss: 0.1735
Epoch 6/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - loss: 0.1870 - val_loss: 0.1055
Epoch 7/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - loss: 0.1401 - val_loss: 0.0610
Epoch 8/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - loss: 0.1122 - val_loss: 0.0274
Epoch 9/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - loss: 0.0924 - val_loss: 0.0296
Epoch 10/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - loss: 0.0765 - val_loss: 0.0139
Epoch 11/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - loss: 0.0597 - val_loss: 0.0111
Epoch 12/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - loss: 0.0540 - val_loss: 0.0101
Epoch 13/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - loss: 0.0432 - val_loss: 0.0053
Epoch 14/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - loss: 0.0380 - val_loss: 0.0052
Epoch 15/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - loss: 0.0334 - val_loss: 0.0030
Epoch 16/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 25ms/step - loss: 0.0283 - val_loss: 0.0021
Epoch 17/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 24ms/step - loss: 0.0228 - val_loss: 0.0012
Epoch 18/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - loss: 0.0244 - val_loss: 0.0017
Epoch 19/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - loss: 0.0195 - val_loss: 0.0016
Epoch 20/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - loss: 0.0189 - val_loss: 0.0020
Epoch 21/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - loss: 0.0191 - val_loss: 0.0019
Epoch 22/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - loss: 0.0174 - val_loss: 0.0016
Epoch 23/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - loss: 0.0157 - val_loss: 0.0020
Epoch 24/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - loss: 0.0157 - val_loss: 0.0015
Epoch 25/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - loss: 0.0139 - val_loss: 0.0023
Epoch 26/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - loss: 0.0130 - val_loss: 0.0017
Epoch 27/10018/18 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step - loss: 0.0157 - val_loss: 0.0014

评估模型

import matplotlib.patches as patches# Saves the model in current path
vit_object_detector.save("vit_object_detector.keras")# To calculate IoU (intersection over union, given two bounding boxes)
def bounding_box_intersection_over_union(box_predicted, box_truth):# get (x, y) coordinates of intersection of bounding boxestop_x_intersect = max(box_predicted[0], box_truth[0])top_y_intersect = max(box_predicted[1], box_truth[1])bottom_x_intersect = min(box_predicted[2], box_truth[2])bottom_y_intersect = min(box_predicted[3], box_truth[3])# calculate area of the intersection bb (bounding box)intersection_area = max(0, bottom_x_intersect - top_x_intersect + 1) * max(0, bottom_y_intersect - top_y_intersect + 1)# calculate area of the prediction bb and ground-truth bbbox_predicted_area = (box_predicted[2] - box_predicted[0] + 1) * (box_predicted[3] - box_predicted[1] + 1)box_truth_area = (box_truth[2] - box_truth[0] + 1) * (box_truth[3] - box_truth[1] + 1)# calculate intersection over union by taking intersection# area and dividing it by the sum of predicted bb and ground truth# bb areas subtracted by  the interesection area# return ioUreturn intersection_area / float(box_predicted_area + box_truth_area - intersection_area)i, mean_iou = 0, 0# Compare results for 10 images in the test set
for input_image in x_test[:10]:fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 15))im = input_image# Display the imageax1.imshow(im.astype("uint8"))ax2.imshow(im.astype("uint8"))input_image = cv2.resize(input_image, (image_size, image_size), interpolation=cv2.INTER_AREA)input_image = np.expand_dims(input_image, axis=0)preds = vit_object_detector.predict(input_image)[0](h, w) = (im).shape[0:2]top_left_x, top_left_y = int(preds[0] * w), int(preds[1] * h)bottom_right_x, bottom_right_y = int(preds[2] * w), int(preds[3] * h)box_predicted = [top_left_x, top_left_y, bottom_right_x, bottom_right_y]# Create the bounding boxrect = patches.Rectangle((top_left_x, top_left_y),bottom_right_x - top_left_x,bottom_right_y - top_left_y,facecolor="none",edgecolor="red",linewidth=1,)# Add the bounding box to the imageax1.add_patch(rect)ax1.set_xlabel("Predicted: "+ str(top_left_x)+ ", "+ str(top_left_y)+ ", "+ str(bottom_right_x)+ ", "+ str(bottom_right_y))top_left_x, top_left_y = int(y_test[i][0] * w), int(y_test[i][1] * h)bottom_right_x, bottom_right_y = int(y_test[i][2] * w), int(y_test[i][3] * h)box_truth = top_left_x, top_left_y, bottom_right_x, bottom_right_ymean_iou += bounding_box_intersection_over_union(box_predicted, box_truth)# Create the bounding boxrect = patches.Rectangle((top_left_x, top_left_y),bottom_right_x - top_left_x,bottom_right_y - top_left_y,facecolor="none",edgecolor="red",linewidth=1,)# Add the bounding box to the imageax2.add_patch(rect)ax2.set_xlabel("Target: "+ str(top_left_x)+ ", "+ str(top_left_y)+ ", "+ str(bottom_right_x)+ ", "+ str(bottom_right_y)+ "\n"+ "IoU"+ str(bounding_box_intersection_over_union(box_predicted, box_truth)))i = i + 1print("mean_iou: " + str(mean_iou / len(x_test[:10])))
plt.show()

演绎展示:

1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 1s/step1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step  1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step  1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step  1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step  1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step  1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step  1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step  1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step  1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step  
mean_iou: 0.9092338486331416

这个例子表明,可以训练一个纯变换器来预测给定图像中物体的边界框,从而将变换器的应用扩展到物体检测任务中。通过调整超参数和预训练,该模型还能得到进一步改进。


这篇关于政安晨:【Keras机器学习示例演绎】(五)—— 利用视觉变换器进行物体检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924033

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2