时间序列数据挖掘--机器学习+统计学方法+kdd论文(二)

2024-04-21 16:18

本文主要是介绍时间序列数据挖掘--机器学习+统计学方法+kdd论文(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时间序列数据挖掘(二)

  • 机器学习+统计学+kdd1718论文
    • 机器学习下的时间序列
      • RNN
        • RNN使用领域
      • LSTM
    • 统计学下的时间序列
      • ARIMA
        • ARIMA的含义
        • 模型前提:平稳
        • ARIMA的数学形式
        • ARIMA模型建立步骤
        • 一些细节

机器学习+统计学+kdd1718论文

第二篇博客,接着上面的笔记写。
上一篇因为操作失误没有保存简直太失败了,这次要注意点。
这一篇主要记录我从统计学模型的角度学习时间序列模型。
因为我不是统计学学生,所以很多知识我都不是很了解,这篇博客的内容都是我现学习的,所以算是一个学习笔记吧。

机器学习下的时间序列

RNN

RNN使用领域

LSTM

统计学下的时间序列

我在网上看,常用的时间序列模型有四种:自回归模型 AR§、移动平均模型 MA(q)、自回归移动平均模型 ARMA(p,q)、自回归差分移动平均模型 ARIMA(p,d,q), 可以说前三种都是 ARIMA(p,d,q)模型的特殊形式。

ARIMA

ARIMA的含义

ARIMA包含3个部分:AR、I、MA。可见,ARIMA模型实际上是AR模型和MA模型的组合

  1. AR: auto regression,即自回归模型
  2. I: integration,即单整阶数,平稳分析后得到几阶单整
  3. MA: moving average,即移动平均模型。
模型前提:平稳

比如股票数据用ARIMA无法预测的原因就是股票数据是非稳定的,常常受政策和新闻的影响而波动。

  1. 平稳的时间序列,非平稳序列直接进行分析,会有伪回归问题。
  2. 检验时间平稳的方法: ADF 单位根检验(如果时间序列不稳定,也可以通过一些操作如log,差分等使得时间序列稳定,此时在 ARIMA 要将结果进行逆操作如取指数,差分的逆操作,可以得到原始数据的预测结果)
  3. ADF 单位检验:若时间序列模型中含有单位根,则模型是非平稳的。核心是单位根检验,具体的单位根检验的学习内容:
    https://wenku.baidu.com/view/b18e720b19e8b8f67c1cb9ec.html
    平稳性的定义:
    我感觉简而言之就是:一个时间序列的随机变量是稳定的,当且仅当它的所有统计特征都是独立于时间的(是关于时间的常量)。
    稳定的数据是没有趋势(trend),没有周期性(seasonality)的; 即它的均值,在时间轴上拥有常量的振幅,并且它的方差,在时间轴上是趋于同一个稳定的值的。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    使用t假设检验,当t统计量大于假设检验临界值(5%等),则接受零假设,序列不平稳;当小于临界值,则拒绝了零假设,则序列是平稳的。
    一个例子:
    使用python对某个时间序列数据进行检验,结果如下(看p-value):在这里插入图片描述
    在这里插入图片描述
    上述例子来源:
    https://www.jianshu.com/p/4130bac8ebec
ARIMA的数学形式

ARIMA(p,d,q)模型有三个参数:p,d,q

  1. p:AR/Auto-Regressive项,代表预测模型中采用的时序数据本身的滞后数(lags)
  2. d:Integrated项,代表时序数据需要进行几阶差分化,才是稳定的
  3. q:MA/Moving Average项,代表预测模型中采用的预测误差的滞后数(lags)

数学形式:
在这里插入图片描述
y表示因变量Y的差分:
在这里插入图片描述
此模型可以描述为三个部分:常数+多个时间的加权和(AR模型)+多个时间的预测误差(MA模型)

几个特列

  1. ARIMA(0,1,0) = random walk
    在这里插入图片描述
  2. ARIMA(1,0,0) = first-order autoregressive model
    在这里插入图片描述
  3. ARIMA(1,1,0) = differenced first-order autoregressive model
    在这里插入图片描述
  4. ARIMA(0,1,1) = simple exponential smoothing with growth
    在这里插入图片描述
    更多例子详见:
    https://www.cnblogs.com/bradleon/p/6827109.html
ARIMA模型建立步骤
  1. 平稳检验,得到d值:若本身序列是平稳的则d=0,若一阶差分是平稳的则d=1,以此类推。
  2. 将平稳序列画出ACF,PACF图像,得出p,q值:p的值就是ACF第一次穿过上置信区间时的横轴值,q的值就是PACF第一次穿过上置信区间的横轴值(要对平稳时间序列分别求得其自相关系数ACF 和偏自相关系数PACF,通过对自相关图和偏自相关图的分析,得到最佳的阶层 p 和阶数 q)
  3. 将得到的d,p,q带入求出ARIMA模型公式:通过数据拟合出模型的函数表达式(得到参数)
  4. 使用拟合的函数可以进行预测
    在这里插入图片描述
    示例图是一个例子中的ARIMA的函数图,蓝线是输入数据,红线是拟合的值,我们使用红线就可以预测出之后的值。
    但要注意此时的出的预测是一阶差分的预测,因此需要逆求出真实值。
    上述具体的例子:
    https://www.cnblogs.com/bradleon/p/6832867.html
一些细节

对ARIMA模型一个更简洁的表述:
在这里插入图片描述
链接:https://blog.csdn.net/chanbupt/article/details/70448147

AR自回归模型
是用自身做回归变量的过程,即利用前期若干时刻的随机变量的线性组合来描述以后某时刻随机变量的线性回归模型.
在这里插入图片描述
MA移动平均模型
MA模型和AR大同小异,它并非是历史时序值的线性组合而是历史白噪声的线性组合。与AR最大的不同之处在于,AR模型中历史白噪声的影响是间接影响当前预测值的(通过影响历史时序值)。
MA模型使用不同阶滞后的白噪音拟合。
在这里插入图片描述
白噪声的期望是0,方差为常数。
白噪声的定义:
对于一个随机变量X(t)(t=1,2,3……),如果是由一个不相关的随机变量的序列构成的,即对于所有s不等于t,随机变量X(t)和X(s)的协方差为零,则称其为纯随机过程。对于一个纯随机过程来说,若其期望为0,方差为常数,则称之为白噪声过程。

这篇关于时间序列数据挖掘--机器学习+统计学方法+kdd论文(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/923514

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T