论文笔记:Residual Attention Network for Image Classification

2024-04-21 16:08

本文主要是介绍论文笔记:Residual Attention Network for Image Classification,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://blog.csdn.net/u013738531/article/details/81293271
Attention使得运算聚焦于特定区域,也可以使得该部分区域的特征得到增强。
‘very deep’的网络结构结合残差连接(Residual Network)在图像分类等任务中表现出了极好的性能。
因此结合attention和residual,突出残差注意力网络。

https://www.jianshu.com/p/490f7d5a56ba
网络是在原有的ResNet网络的基础上,添加了一些新的分支:Soft Mask Branch,形成了残差注意力网络
ResNet网络:
在这里插入图片描述在这里插入图片描述

  1. 为什么用Residual Attention
    首先,作者大概介绍了一下Residual Attention Network是怎么回事,然后介绍说自己用stacking Attention Modules方法的原因,因为和最简单的只使用一次soft weight mask方法相比,stacking 具有很多优势。在有些图片中,由于背景复杂,环境复杂,这时候就需要对不同的地方给与不同的注意力。如果只使用一次soft weight mask分支,那么可能需要指数级的通道数来捕捉这些信息。而且只有一次机会,有些时候有可能会导致捕捉失败。而在Residual Attention Network中,因为主网络的每个分支都有自己单独的mask分支,所以可以缓解上面说的这些情况。
  2. 为什么用Residual
    主要有两个原因:原始的Attention Modules由于使用点乘的形式,会导致效果明显下降。首先,和mask分支进行点乘会导致在deep layers中提取到的特征的数值明显下降。第二,soft mask有可能会破坏主网络的有些好的性质,比如the identical mapping of Residual Unit。
  3. Soft Mask Branch
    作者借鉴了FCN的结构,在attention分支中对特征图进行卷积和反卷积的操作(其实,和RNN中many-to-many有异曲同工之妙,都是encoder-decoder结构)。另外,作者在这个分支中,又设计了单独的分支内部的residual unit。
    在这里插入图片描述
    在这里插入图片描述
    上图基本上可以囊括本文的绝大部分内容,对于某一层的输出featuremap,也就是下一层的输入,对于一个普通的网络,只有右半部分,也就是TrunkBranch,作者在这个基础上增加了左半部分:Soft Mask Branch——一个Bottom-up Top-down的结构。
    Bottom-up Top-down的结构首先通过一系列的卷基和pooling,逐渐提取高层特征并增大模型的感受野,之前说过高层特征中所激活的Pixel能够反映Attention所在的区域,于是再通过相同数量的up sample将feature map的尺寸放大到与原始输入一样大(这里的upsample通过deconvolution来实现,可以利用bilinear interpolation 也可以利用deconvolution自己来学习参数,可参考FCN中的deconvolution使用方式),这样就将Attention的区域对应到输入的每一个pixel上,我们称之为Attention map。Bottom-up Top-down这种encoder-decoder的结构在图像分割中用的比较多,如FCN,也正好是利用了这种结构相当于一个weakly-supervised的定位任务的学习。
    接下来就要把Soft Mask Branch与Trunk Branch的输出结合起来,SoftMask Branch输出的Attention map中的每一个pixel值相当于对原始feature map上每一个pixel值的权重,它会增强有意义的特征,而抑制无意义的信息,因此,将SoftMask Branch与Trunk Branch输出的feature map进行element-wised的乘法,就得到了一个weighted Attention map。但是无法直接将这个weightedAttention map输入到下一层中,因为Soft Mask Branch的激活函数是Sigmoid,输出值在(0,1)之间(之所以这么做,我认为是不希望给前后两层的feature map带来太大的差异和扰动,其次能够进一步的抑制不重要的信息),因此通过一系列这样的乘法,将会导致feature map的值越来越小,并且也可能打破原始网络的特性,当层次极深时,给训练带来了很大的困难。因此作者在得到了weighted Attention map之后又与原来TrunkBranch的feature map进行了一个element-wised的操作,这就和ResNet有异曲同工之妙,该层的输出由下面这个式子组成:
    在这里插入图片描述
    其中M(x)为Soft Mask Branch的输出,F(x)为Trunk Branch的输出,那么当M(x)=0时,该层的输入就等于F(x),因此该层的效果不可能比原始的F(x)差,这一点也借鉴了ResNet中恒等映射的思想,同时这样的加法,也使得Trunk Branch输出的feature map中显著的特征更加显著,增加了特征的判别性。这样,优化的问题解决了,性能的问题也解决了,因此通过将这种残差结构进行堆叠,就能够很容易的将模型的深度达到很深的层次,具有非常好的性能。

实际上就是一个ResNet网络就的改进,只不过这里改进的方向不是在深度上,而是在宽度上,增加了一些attention分支。

这篇关于论文笔记:Residual Attention Network for Image Classification的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/923494

相关文章

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

什么是 Flash Attention

Flash Attention 是 由 Tri Dao 和 Dan Fu 等人在2022年的论文 FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness 中 提出的, 论文可以从 https://arxiv.org/abs/2205.14135 页面下载,点击 View PDF 就可以下载。 下面我

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit