结合OpenCV和CUDA扩展自定义函数接口之导向滤波算法实现

本文主要是介绍结合OpenCV和CUDA扩展自定义函数接口之导向滤波算法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

声明:本文内容原创,首发于CSDN博客。未经许可禁止转载。需要更多帮助请私信或邮件联系。

前言

CUDA(Compute Unified Device Architecture,统一计算架构)是由NVIDIA所推出的一种集成技术,是其对于GPGPU(A General-Purpose Graphics Processing Unit)的正式名称。通过该技术,开发者可以利用NVIDIA的GeForce 8以后的GPU进行计算。极大加速计算型应用的效率。通常用于游戏开发、视频编解码、图像处理等领域。

OpenCV从3.0版后集成了关于CUDA相关操作的高级封装,其中GpuMat数据类型可以看做Mat的GPU版本,有极好的数据属性封装,且能够内部隐式转化成可以直接作为核函数参数的PtrStepSz、PtrStep。
在这里插入图片描述

我们可以很方便使用OpenCV搭建好的框架来扩展实现需要的算法,本文将以导向滤波算法为例,记录使用CUDA使能的OpenCV来实现的GuidedFilter

分析

在使用OpenCV扩展实现算法前,需要了解OpenCV源码的结构。

在OpenCV Doc官网,可以看到OpenCV的模块包含Main modulesExtra modules两大部分,分别放在opencv和opencv_contrib中:
在这里插入图片描述
在这里插入图片描述
对应到GitHub源码,可以很清晰的看出modules的结构:

Main modules部分源码:
在这里插入图片描述
Extra modules部分源码:
在这里插入图片描述
本文主要考虑CUDA加速的导向滤波算法实现,因此以Extra modules部分源码为基准进行扩展。

例如对于cudaimgproc模块,在opencv_contrib/modules/cudaimgproc/路径下的结构如下:
在这里插入图片描述
包括了头文件、实现源文件、测试代码以及CMakeLists.txt,其中CMakeLists.txt定义了该模块下需要编译的模块内容选项,其内容如下:

if(IOS OR WINRT OR (NOT HAVE_CUDA AND NOT BUILD_CUDA_STUBS))ocv_module_disable(cudaimgproc)
endif()set(the_description "CUDA-accelerated Image Processing")ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4127 /wd4100 /wd4324 /wd4512 /wd4515 -Wundef -Wmissing-declarations -Wshadow -Wunused-parameter)ocv_define_module(cudaimgproc opencv_imgproc OPTIONAL opencv_cudev opencv_cudaarithm opencv_cudafilters WRAP python)

而头文件的文件夹"include/opencv2"中只包含了cudaimgproc.hpp一个头文件,其中定义了编译完成后可供外部调用的函数接口,例如CUDA版双边滤波算法接口定义如下:
在这里插入图片描述
关于可供Python调用接口生成部分的内容可以看之前的博客《使用OpenCV自带gen2.py等工具生成C++的Python binding示例》内容。

再看实现源文件的文件夹src,可以看到如下结构:
在这里插入图片描述
还是以双边滤波为例,打开bilateral_filter.cpp文件,可以看到具体的实现内容:
在这里插入图片描述
需要注意的是其调用了cuda文件夹下的bilateral_filter.cu CUDA核函数实现源码。

另外被包含的precomp.hpp头文件中定义了OpenCV在编译这个modules时需要的一些依赖头文件:

#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__#include "opencv2/cudaimgproc.hpp"#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include "opencv2/core/private.cuda.hpp"#include "opencv2/opencv_modules.hpp"#ifdef HAVE_OPENCV_CUDAARITHM
#  include "opencv2/cudaarithm.hpp"
#endif#ifdef HAVE_OPENCV_CUDAFILTERS
#  include "opencv2/cudafilters.hpp"
#endif#include <limits>
#include <algorithm>#endif /* __OPENCV_PRECOMP_H__ */

关于CUDA版双边滤波的实现源码只在这些文件中出现,在OpenCV编译生成后则可以正常的使用相应的接口“cv::cuda::bilateralFilter()”了。

类似于双边滤波,导向滤波其实也可以类似实现。

实现

要实现基于OpenCV的CUDA版导向滤波算法,需要定义接口、编写头文件以及对类和方法进行实现。

一、接口定义

考虑到导向滤波和双边滤波的相似性,可以选择在cudaimgproc模块中实现相应源码。

先在cudaimgproc模块的头文件"include/opencv2/cudaimgproc.hpp"中定义导向滤波的接口:


// Guided Filter ///
class CV_EXPORTS_W  GuidedFilter  : public Algorithm{public:CV_WRAP virtual void update(InputArray guide, int dDepth = -1, Stream &stream = Stream::Null()) = 0;CV_WRAP virtual void filter(InputArray src, OutputArray dst, int dDepth = -1, Stream &stream = Stream::Null()) = 0;
};CV_EXPORTS_W Ptr<GuidedFilter> createGuidedFilter(Size size, int radius, double eps, int dDepth, int type, int channels = 3);CV_EXPORTS_W void guidedFilter(InputArray guide, InputArray src, OutputArray dst, int radius, double eps, int dDepth = -1, Stream& stream = Stream::Null());

通过定义接口,我们可以使用cv::cuda::guidedFilter(C++)或者createGuidedFilter & update & filter的方式来调用CUDA导向滤波。

在这里插入图片描述

二、头文件实现

在src源码中新建guided_filter.hpp文件,定义相应的导向滤波类和方法:

/*M///
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form

这篇关于结合OpenCV和CUDA扩展自定义函数接口之导向滤波算法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/922136

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Open3D 基于法线的双边滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 输入参数: 输出参数: 参数影响: 2.2完整代码 三、实现效果 3.1原始点云 3.2滤波后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         基于法线的双边

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig