结合OpenCV和CUDA扩展自定义函数接口之导向滤波算法实现

本文主要是介绍结合OpenCV和CUDA扩展自定义函数接口之导向滤波算法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

声明:本文内容原创,首发于CSDN博客。未经许可禁止转载。需要更多帮助请私信或邮件联系。

前言

CUDA(Compute Unified Device Architecture,统一计算架构)是由NVIDIA所推出的一种集成技术,是其对于GPGPU(A General-Purpose Graphics Processing Unit)的正式名称。通过该技术,开发者可以利用NVIDIA的GeForce 8以后的GPU进行计算。极大加速计算型应用的效率。通常用于游戏开发、视频编解码、图像处理等领域。

OpenCV从3.0版后集成了关于CUDA相关操作的高级封装,其中GpuMat数据类型可以看做Mat的GPU版本,有极好的数据属性封装,且能够内部隐式转化成可以直接作为核函数参数的PtrStepSz、PtrStep。
在这里插入图片描述

我们可以很方便使用OpenCV搭建好的框架来扩展实现需要的算法,本文将以导向滤波算法为例,记录使用CUDA使能的OpenCV来实现的GuidedFilter

分析

在使用OpenCV扩展实现算法前,需要了解OpenCV源码的结构。

在OpenCV Doc官网,可以看到OpenCV的模块包含Main modulesExtra modules两大部分,分别放在opencv和opencv_contrib中:
在这里插入图片描述
在这里插入图片描述
对应到GitHub源码,可以很清晰的看出modules的结构:

Main modules部分源码:
在这里插入图片描述
Extra modules部分源码:
在这里插入图片描述
本文主要考虑CUDA加速的导向滤波算法实现,因此以Extra modules部分源码为基准进行扩展。

例如对于cudaimgproc模块,在opencv_contrib/modules/cudaimgproc/路径下的结构如下:
在这里插入图片描述
包括了头文件、实现源文件、测试代码以及CMakeLists.txt,其中CMakeLists.txt定义了该模块下需要编译的模块内容选项,其内容如下:

if(IOS OR WINRT OR (NOT HAVE_CUDA AND NOT BUILD_CUDA_STUBS))ocv_module_disable(cudaimgproc)
endif()set(the_description "CUDA-accelerated Image Processing")ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4127 /wd4100 /wd4324 /wd4512 /wd4515 -Wundef -Wmissing-declarations -Wshadow -Wunused-parameter)ocv_define_module(cudaimgproc opencv_imgproc OPTIONAL opencv_cudev opencv_cudaarithm opencv_cudafilters WRAP python)

而头文件的文件夹"include/opencv2"中只包含了cudaimgproc.hpp一个头文件,其中定义了编译完成后可供外部调用的函数接口,例如CUDA版双边滤波算法接口定义如下:
在这里插入图片描述
关于可供Python调用接口生成部分的内容可以看之前的博客《使用OpenCV自带gen2.py等工具生成C++的Python binding示例》内容。

再看实现源文件的文件夹src,可以看到如下结构:
在这里插入图片描述
还是以双边滤波为例,打开bilateral_filter.cpp文件,可以看到具体的实现内容:
在这里插入图片描述
需要注意的是其调用了cuda文件夹下的bilateral_filter.cu CUDA核函数实现源码。

另外被包含的precomp.hpp头文件中定义了OpenCV在编译这个modules时需要的一些依赖头文件:

#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__#include "opencv2/cudaimgproc.hpp"#include "opencv2/core/utility.hpp"
#include "opencv2/core/private.hpp"
#include "opencv2/core/private.cuda.hpp"#include "opencv2/opencv_modules.hpp"#ifdef HAVE_OPENCV_CUDAARITHM
#  include "opencv2/cudaarithm.hpp"
#endif#ifdef HAVE_OPENCV_CUDAFILTERS
#  include "opencv2/cudafilters.hpp"
#endif#include <limits>
#include <algorithm>#endif /* __OPENCV_PRECOMP_H__ */

关于CUDA版双边滤波的实现源码只在这些文件中出现,在OpenCV编译生成后则可以正常的使用相应的接口“cv::cuda::bilateralFilter()”了。

类似于双边滤波,导向滤波其实也可以类似实现。

实现

要实现基于OpenCV的CUDA版导向滤波算法,需要定义接口、编写头文件以及对类和方法进行实现。

一、接口定义

考虑到导向滤波和双边滤波的相似性,可以选择在cudaimgproc模块中实现相应源码。

先在cudaimgproc模块的头文件"include/opencv2/cudaimgproc.hpp"中定义导向滤波的接口:


// Guided Filter ///
class CV_EXPORTS_W  GuidedFilter  : public Algorithm{public:CV_WRAP virtual void update(InputArray guide, int dDepth = -1, Stream &stream = Stream::Null()) = 0;CV_WRAP virtual void filter(InputArray src, OutputArray dst, int dDepth = -1, Stream &stream = Stream::Null()) = 0;
};CV_EXPORTS_W Ptr<GuidedFilter> createGuidedFilter(Size size, int radius, double eps, int dDepth, int type, int channels = 3);CV_EXPORTS_W void guidedFilter(InputArray guide, InputArray src, OutputArray dst, int radius, double eps, int dDepth = -1, Stream& stream = Stream::Null());

通过定义接口,我们可以使用cv::cuda::guidedFilter(C++)或者createGuidedFilter & update & filter的方式来调用CUDA导向滤波。

在这里插入图片描述

二、头文件实现

在src源码中新建guided_filter.hpp文件,定义相应的导向滤波类和方法:

/*M///
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form

这篇关于结合OpenCV和CUDA扩展自定义函数接口之导向滤波算法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/922136

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import