人工智能培训老师叶梓:如何通过Prompt优化提升GPT-4性能

2024-04-20 17:44

本文主要是介绍人工智能培训老师叶梓:如何通过Prompt优化提升GPT-4性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在人工智能领域,尤其是自然语言处理(NLP)中,Prompt工程是一种通过精心设计的提示(prompt)来引导模型生成期望输出的技术。最近,微软的研究团队通过Prompt优化策略,在医疗领域取得了显著的成果,并发现这些策略可以泛化到通用场景中,显著提升了GPT-4的性能。本文将探讨Prompt工程的基本概念、微软的策略以及如何通过Prompt优化提升GPT-4的性能。

1. Prompt工程的基本概念

Prompt工程是一种利用自然语言提示来引导语言模型的行为,使其更精确地执行特定任务的技术。这些提示可以是问题、指令或任何形式的文本,它们直接影响模型的输出质量。

2. 微软的Prompt优化策略

微软的研究团队通过创新的Prompt工程方法,显著提升了GPT-4在特定任务上的性能。以下是对Medprompt方法中三种策略的详细说明:

1). 动态少样本选择(Dynamic Few Shots)

概念:动态少样本选择是一种策略,它为模型提供与当前任务最相关的几个示例,帮助模型快速适应特定领域并学会遵循任务格式。

实现:该策略的核心在于选择与测试示例在语义上最相似的训练示例。这通过以下步骤实现:

  • 使用OpenAI的text-embedding-ada-002模型对候选示例进行嵌入,生成其在嵌入空间中的表示。
  • 对于每个测试问题,使用k-NN聚类从训练集中检索其最近的k个邻居,这些邻居在嵌入空间中与测试问题最相似。
  • 将这些最相似的示例作为少样本示例,用于提示模型。

优势:这种方法比固定不变的少样本示例更具有代表性和相关性,因为它能够根据每个测试示例的具体情况动态选择最合适的示例。

2). 思考链(Chain of Thought, CoT)

概念:思考链是一种鼓励模型生成一系列中间推理步骤的策略,以提高模型进行复杂推理的能力。

实现:与依赖专家手动组成的思考链示例不同,微软的策略通过自动化的方式生成这些推理步骤:

  • 要求GPT-4为训练示例生成思考链,即一系列逻辑推理步骤。
  • 通过适当的防范措施,如限制生成步骤的数量或使用验证机制,以减少错误推理链导致的错觉风险。

优势:自动化生成思考链减少了对人类专家的依赖,同时提高了模型解决复杂问题的能力。

3). 多数投票集成(Majority Vote Ensembling)

概念:集成技术通过组合多个算法的输出来提高预测性能。对于GPT-4这样的前沿模型,集成其自身输出可以进一步提升性能。

实现

  • 使用不同的提示或不同温度设置下的单个提示,生成多个推理路径。
  • 对于多项选择题,采用选择重排技术,在生成每个推理路径之前对答案选项的相对顺序进行随机重排。
  • 选择最一致的答案,即对选择重排最不敏感的答案,作为最终输出。

优势:这种方法增加了集成的多样性,并提高了答案的鲁棒性,尤其是在面对多项选择题时。

微软的Medprompt方法通过结合动态少样本选择、思考链和多数投票集成三种策略,有效地提升了GPT-4在特定任务上的性能。这些策略的创新之处在于它们能够动态适应任务需求,自动化生成推理步骤,并增加模型输出的鲁棒性。这些研究成果不仅在医疗领域具有重要价值,也为其他领域的Prompt工程提供了宝贵的经验和启示。

3. 提升GPT-4性能的关键点

1). 个性化的Prompt设计

个性化的Prompt设计是提升GPT-4性能的首要步骤。Prompt需要根据特定任务的需求精心设计,以确保模型能够准确理解任务要求并生成恰当的响应。个性化的Prompt设计包括:

  • 任务相关性:确保Prompt与手头的任务紧密相关,避免引入无关信息。
  • 清晰性:使用清晰、简洁的语言,避免歧义,确保模型能够准确把握指令。
  • 引导性:通过提问或指令的形式引导模型沿着特定的思路进行推理。
2). 动态样本选择

动态样本选择是微软Medprompt方法中的关键组成部分,它允许模型根据当前任务的具体情况选择最合适的样本。这种方法的优势在于:

  • 适应性:模型能够快速适应新的任务或领域,因为它不是依赖固定不变的样本,而是根据当前任务的需要动态选择样本。
  • 代表性:通过k-NN聚类等技术,模型能够选择在语义上与当前任务最相关的样本,从而提高输出的准确性。
3). 自动化的思考链生成

自动化的思考链生成是提升GPT-4推理能力的重要策略。通过自动化生成推理步骤,模型能够:

  • 生成中间推理步骤:模型能够生成一系列逻辑推理步骤,这些步骤有助于解决复杂的任务。
  • 减少对专家的依赖:自动化生成思考链减少了对人类专家的依赖,使得模型能够更广泛地应用于各种任务。
4). 集成方法的创新

集成方法通过组合多个模型的输出来提高预测性能。对于GPT-4,集成其自身输出可以进一步提升性能:

  • 多样性:通过使用不同的提示或温度设置,模型能够生成多样化的推理路径。
  • 鲁棒性:多数投票集成和选择重排技术增加了答案的鲁棒性,尤其是在面对多项选择题时。
5). 持续的优化和调整

为了持续提升GPT-4的性能,需要不断地对Prompt进行优化和调整:

  • 迭代测试:通过不断的测试和反馈,识别Prompt中的不足之处,并进行相应的调整。
  • 性能监控:监控模型在不同任务上的表现,以确定哪些Prompt最有效。

4. 应用前景与挑战

  • 任务相关性:确保Prompt与手头的任务紧密相关,避免引入无关信息。
  • 清晰性:使用清晰、简洁的语言,避免歧义,确保模型能够准确把握指令。
  • 引导性:通过提问或指令的形式引导模型沿着特定的思路进行推理。
  • 适应性:模型能够快速适应新的任务或领域,因为它不是依赖固定不变的样本,而是根据当前任务的需要动态选择样本。
  • 代表性:通过k-NN聚类等技术,模型能够选择在语义上与当前任务最相关的样本,从而提高输出的准确性。
  • 生成中间推理步骤:模型能够生成一系列逻辑推理步骤,这些步骤有助于解决复杂的任务。
  • 减少对专家的依赖:自动化生成思考链减少了对人类专家的依赖,使得模型能够更广泛地应用于各种任务。
  • 多样性:通过使用不同的提示或温度设置,模型能够生成多样化的推理路径。
  • 鲁棒性:多数投票集成和选择重排技术增加了答案的鲁棒性,尤其是在面对多项选择题时。
  • 迭代测试:通过不断的测试和反馈,识别Prompt中的不足之处,并进行相应的调整。
  • 性能监控:监控模型在不同任务上的表现,以确定哪些Prompt最有效。

Prompt工程在提升语言模型性能方面展现出巨大潜力,尤其在需要模型快速适应新领域或任务时。然而,这项技术也面临一些挑战,包括如何设计有效的Prompt、如何处理模型对特定Prompt的过度拟合,以及如何确保生成的推理链的准确性。

5. 结论

微软的研究展示了通过Prompt工程可以显著提升GPT-4在多个任务上的性能。这项工作不仅在医疗领域有重要应用,也为其他领域的研究提供了宝贵的参考。随着Prompt工程的不断发展,我们期待它在未来的人工智能应用中扮演更加重要的角色。

参考资料
  1. Medprompt: A Prompt-based Method for Efficiently Guiding General-purpose Models to Expert-Level Performance on Medical Tasks
  2. Microsoft/promptbase GitHub repository

这篇关于人工智能培训老师叶梓:如何通过Prompt优化提升GPT-4性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/920921

相关文章

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

黑神话,XSKY 星飞全闪单卷性能突破310万

当下,云计算仍然是企业主要的基础架构,随着关键业务的逐步虚拟化和云化,对于块存储的性能要求也日益提高。企业对于低延迟、高稳定性的存储解决方案的需求日益迫切。为了满足这些日益增长的 IO 密集型应用场景,众多云服务提供商正在不断推陈出新,推出具有更低时延和更高 IOPS 性能的云硬盘产品。 8 月 22 日 2024 DTCC 大会上(第十五届中国数据库技术大会),XSKY星辰天合正式公布了基于星

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了