本文主要是介绍【Applied Algebra】隐藏子群问题和Shor算法的新视角,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
隐藏子群问题和Shor算法的新视角
隐藏子群问题是指给定一个群和一个函数,该函数对于群的一个子群是常数,并且对于子群的任何两个不同的左陪集有不同的值,问题是找到这个子群.HSP是许多量子算法的基础,其中最著名的是Shor的算法,它可以用来分解大整数和计算离散对数,这直接威胁到RSA和ECC等基于这些数学问题难度的公钥加密系统的安全性.
隐藏子群问题
隐藏子群问题(Hidden Subgroup Problem, HSP) 是量子计算中一个非常重要的问题,它在理论计算机科学和量子算法的设计中扮演着核心角色.在密码学中,隐藏子群问题的解决方案构成了解决一些基础密码学问题的基石,尤其是与数论相关的那些问题.
隐藏子群问题的定义
隐藏子群问题涉及到以下的组件:
- 一个有限群 G G G.
- 一个保密的子群 H ⊂ G H \subset G H⊂G.
- 一个函数 f : G → X f:G \rightarrow X f:G→X,它对于子群 H H H 的所有元素有相同的输出,并且对于 H H H 的不同左陪集有不同的输出.
问题的目标是确定子群 H H H 的生成元,仅仅通过观察函数 f f f 的行为.这个问题在量子计算中特别重要,因为量子算法能够利用量子叠加和纠缠来同时查询多个函数值,从而有效地揭示出隐藏的群结构.
- 例(整数群的一个HSP):令 f f f是一个 Z N → 颜色 \mathbb{Z}_N \rightarrow \text{颜色} ZN→颜色的一个函数,满足有 s ∈ Z N s \in \mathbb{Z}_N s∈ZN,对于任意的 x ∈ Z N x \in \mathbb{Z}_N x∈ZN,要么有 f ( x ) = f ( x + r ) f(x)=f(x+r) f(x)=f(x+r),要么 f f f的值不同(此时 Z s \mathbb{Z}_s Zs即为一个隐藏子群);
整数分解问题:在整数分解问题中,目标是找到一个大数 N N N 的素数相乘的分解.Shor的算法通过量子傅立叶变换解决了这一问题的一个隐藏子群版本.具体来说,给定一个随机选择的 a < N a < N a<N,算法寻找满足 a r ≡ 1 ( mod N ) a^r \equiv 1 (\text{mod} \, N) ar≡1(modN) 的最小正整数 r r r,即 a a a 的阶.这实际上涉及到寻找循环群 Z N × \mathbb{Z}_N^\times ZN× 的一个隐藏子群.
在这个问题中,我们可以构造一个周期函数 f ( x ) = a x m o d N f(x) = a^x \mod N f(x)=axmodN,其周期就是 a a a 的阶 r r r.隐藏子群 H H H 就是所有满足 f ( x ) = f ( x + r ) f(x) = f(x+r) f(x)=f(x+r) 的 x x x 的集合.量子算法通过构建和测量这个周期函数的量子叠加状态来高效地找到周期 r r r,从而解决整数分解问题.
离散对数问题:在离散对数问题中,给定一个群 G G G,一个生成元 g g g 和一个元素 h ∈ G h \in G h∈G,需要找到一个整数 x x x,使得 g x = h g^x = h gx=h.Shor提出了一个量子算法来解决这个问题,这也可以视为一个关于寻找循环群的隐藏子群的问题.
对于阶为 q q q 的循环群 G G G 和子群 H H H,如果 H H H 是由 h h h 生成的,则所有 H H H 的元素都具有相同的离散对数相对于 g g g, 将每个元素 u ∈ G u \in G u∈G 映射到 ( u , g u m o d N ) (u, g^u \mod N) (u,gumodN);可以看出这里的隐藏子群就是所有具有相同 g g g 幂次的元素的集合,相当于 H H H 在 G G G 中的核.而离散对数问题的量子算法利用了HSP框架,通过找到该核构成的子群,从而得出离散对数 x x x.
- 例(一个HSP算例):假设 N = 21 N = 21 N=21,且 a = 2 a = 2 a=2,那么 a a a 相对于 N N N 的阶是 r = 6 r = 6 r=6,因为 2 6 ≡ 1 ( m o d 21 ) 2^6 \equiv 1 \pmod{21} 26≡1(mod21).我们可以观察到 2 0 , 2 6 , 2 12 , … 2^0, 2^6, 2^{12}, \ldots 20,26,212,… 都模 21 21 21 同余于 1 1 1,因此 6 ⋅ Z 6\cdot\mathbb{Z} 6⋅Z构成了 Z \mathbb{Z} Z 中的一个隐藏子群(加法群的意义下).量子算法可以在 a x m o d 21 a^x \mod 21 axmod21 上操作,高效地找到这个隐藏子群的周期 6 6 6.
Shor’s算法的物理视角
关于Shor’s算法的教程已经汗牛充栋了,我们就不再费口舌再讲了;但是我们从感性的物理视角来看看它的本质;首先是傅里叶变换和逆变换的解读,其实就是波的分解和再叠加,比如潮汐力的因素有很多,傅里叶变换相当于找到这些基因素(逆变换相当于再揉在一起):
现在来解读"量子门"这个东西的本质,其实就是一种酉作用,酉指可逆,作用就相当于说是某种效应的"等效";总而言之,就是对某种状态的变换:
现在使用一个简单的循环来寻找HSP隐藏的周期.实际上,寻找这种函数的周期是Shor算法的基础,这其中使用量子傅立叶逆变换可以高效地完成周期的寻找,为什么?因为量子傅立叶逆变换就是"揉",揉出来一个综合的波形,最终的效果,其实就相当于是离散对数上的双缝干涉实验!!(这是Shor本人的解读)
这篇关于【Applied Algebra】隐藏子群问题和Shor算法的新视角的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!