POJ 3468 A Simple Problem with Integers(段更新的区间求和Lazy思想线段树)

2024-04-20 12:08

本文主要是介绍POJ 3468 A Simple Problem with Integers(段更新的区间求和Lazy思想线段树),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:[kuangbin带你飞]专题七 线段树 C - A Simple Problem with Integers

题意

给定n个数及m个操作。
操作分两种:
1. C a b c,表示对区间ab整体全部加上c
2. Q a b ,对区间ab求和并输出。

思路

看到段更新,第一反应是给点更新外面加个for,但显然不可行。
了解到有个Lazy思想,即记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。
这个思想可以简单的用一个比喻来描述:一个四口之家每月都可以领国家的补贴,国家发放时自然是发到他们整体,那么孩子与父母分家后呢,怎么办,这时就需要在牠们家庭的基础上进一步分开分配了(例子不是很形象,大概就是这个意思)。
我们用两个数组Sum和Add,Sum表示当前区间的和,Add表示当前区间所整体增加的值。
两个操作,PushUp(子向父更新),PushDown(父向子更新)
继续上面的比喻,你是那个四口之家的小孩,平日里补贴肯定是到不了你手上,所以也就没必要去算你到底有多少,那么当你某时需要用呢(进行求和操作时),你再问父亲要(这个时候进行PushDown操作)。
这样的话,在update就免去了很多不必要的操作,效率大大提升。

代码

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <vector>using namespace std;const int N = 100009;
const int MAX = N*3;
long long Sum[MAX], Add[MAX] = {};void PushUp(int k)
{Sum[k] = Sum[k<<1] + Sum[k<<1 | 1];
}void PushDown(int k, int num)
{if(!Add[k])return;Add[k<<1] += Add[k];Add[k<<1 | 1] += Add[k];Sum[k<<1] += ((num+1)>>1)*Add[k];Sum[k<<1 | 1] += (num>>1)*Add[k];Add[k] = 0;
}void build(int l, int r, int k)
{Add[k] = 0;if(l == r){scanf("%lld", &Sum[k]);return;}int mid = (l+r)>>1;build(l, mid, k<<1);build(mid+1, r, k<<1 | 1);PushUp(k);
}void update(int l, int r, int tol, int tor, int d, int k)
{if(tol <= l && tor >= r){Add[k] += d;Sum[k] += d*(r-l+1);return;}PushDown(k, r-l+1);int mid = (l+r)>>1;if(tol <= mid)update(l, mid, tol, tor, d, k<<1);if(tor > mid)update(mid+1, r, tol, tor, d, k<<1 | 1);PushUp(k);
}long long find(int l, int r, int tol, int tor, int k)
{if(tol <= l && tor >= r)return Sum[k];PushDown(k, r-l+1);int mid = (l+r)>>1;long long ans = 0;if(tol <= mid)ans += find(l, mid, tol, tor, k<<1);if(tor > mid)ans += find(mid+1, r, tol, tor, k<<1 | 1);return ans;
}int main()
{int n, m;scanf("%d%d", &n, &m);build(1, n, 1);char str[10];int i, j, k;while(m--){scanf("%s", str);if(str[0] == 'C'){scanf("%d%d%d", &i, &j, &k);update(1, n, i, j, k, 1);}else{scanf("%d%d", &i, &j);printf("%lld\n" ,find(1, n, i, j, 1));}}return 0;
}

这篇关于POJ 3468 A Simple Problem with Integers(段更新的区间求和Lazy思想线段树)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/920222

相关文章

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Ubuntu 24.04 LTS怎么关闭 Ubuntu Pro 更新提示弹窗?

《Ubuntu24.04LTS怎么关闭UbuntuPro更新提示弹窗?》Ubuntu每次开机都会弹窗提示安全更新,设置里最多只能取消自动下载,自动更新,但无法做到直接让自动更新的弹窗不出现,... 如果你正在使用 Ubuntu 24.04 LTS,可能会注意到——在使用「软件更新器」或运行 APT 命令时,

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

hdu1689(线段树成段更新)

两种操作:1、set区间[a,b]上数字为v;2、查询[ 1 , n ]上的sum 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdl

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO