代码随想录算法训练营第三十六天| 435.无重叠区间、763.划分字母区间、56.合并区间

本文主要是介绍代码随想录算法训练营第三十六天| 435.无重叠区间、763.划分字母区间、56.合并区间,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录


目录

  • 系列文章目录
  • 435. 无重叠区间
    • 贪心算法
      • 按左边界排序(与【452. 用最少数量的箭引爆气球】思路差不多)
  • 763.划分字母区间
    • 贪心算法
      • ①将字符串映射到哈希数组,用二维数组记录每个字母存在的区间, 转化为重叠区间问题求解
      • ②将字符串映射到`LinkedHashMap`中,`key`为出现过的字母,`value`为二维数组(存储`key`对应字母的区间索引),然后判断区间是否覆盖(两种方法差不多,映射到哈希数组耗时少些)
      • ③使用一个for循环,更新右边界,当移动下标达到最大右边界时,说明已经找到了一个片段(与【45.跳跃游戏 II】有点像)耗时最少
  • 56. 合并区间
    • 贪心算法
      • 按照重叠区间来比较,则最后一个区间需单独处理


435. 无重叠区间

贪心算法

通过排序让区间尽可能的重叠。可以左边界排序也可右边界排序。
在这里插入图片描述

按左边界排序(与【452. 用最少数量的箭引爆气球】思路差不多)

当两个区间重叠时,需要记录重叠的区间(或者记录最大非交叉区间的数量,即【452. 用最少数量的箭引爆气球】的弓箭的数量,只要把弓箭那道题目代码里非重叠区间的判断条件加个等号(认为[0,1][1,2]不是相邻区间),然后用总区间数减去弓箭数量就是要移除的区间数量了。),并更新最小右边界,因如果下一个区间的左边界<当前最小右边界,则说明有三个区间重叠,必须要删除其中两个才行。而如果下一个区间的左边界>当前最小右边界,则可以只删一个区间就可让区间不重叠。如下图所示:
在这里插入图片描述

class Solution {public int eraseOverlapIntervals(int[][] intervals) {//int nonOverlapNum = 1;int overlapNum = 0;Arrays.sort(intervals, (a, b) -> Integer.compare(a[0], b[0]));/*for (int i = 1; i < intervals.length; i++) {if (intervals[i][0] >= intervals[i - 1][1]) {// 区间非重叠nonOverlapNum++;} else {//重叠intervals[i][1] = Math.min(intervals[i - 1][1], intervals[i][1]);}}return intervals.length - nonOverlapNum;*/for (int i = 1; i < intervals.length; i++) {if (intervals[i][0] < intervals[i - 1][1]) {//区间重叠overlapNum++;intervals[i][1] = Math.min(intervals[i - 1][1], intervals[i][1]);}}return overlapNum;}
}

763.划分字母区间

贪心算法

①将字符串映射到哈希数组,用二维数组记录每个字母存在的区间, 转化为重叠区间问题求解

  • 遍历每个字符记录每个字母的区间:将字符串映射到二维数组上,即下标为s.charAt(i) - 'a'的地方,在遍历字符串时,将每个字符第一次出现的起始位置记录下来,注意第一个元素要区别对待且放在记录其他元素起始位置的下方,否则后面如果出现和第一个元素相同的字母[起始坐标为0],会错误更新起始位置。
  • 判断当前区间与上一个区间是否重叠,进而判断是否划分片段,因是通过遍历字符串来间接遍历该字母所对应的区间,故区间起始位置已经是有序的了,只需查看是否覆盖即可。注意每次划分片段都是在片段的下一个区间进行的,因此最后一个片段得单独处理
  • 缺点:映射的数组没有过滤空元素,即有些没有在字符串中出现过的字母映射的下标上虽然没有值,但却在该数组中。故判断区间是否重叠时只能再遍历字符串以避免遍历到空元素,但这会导致重复遍历区间,比如一个字符出现两次,则会遍历两次该字符所对应的区间,如何只关注区间而不会产生空元素呢?可以映射到LinkedHashMap使存储顺序与输入顺序相同,后序就不需要排序来判断区间是否的覆盖,key为出现过的字母,value为二维数组(存储key对应字母的区间索引)。
import java.util.LinkedList;
import java.util.List;
class Solution {public List<Integer> partitionLabels(String s) {List<Integer> res = new LinkedList<>();int count = 0;int[][] letter = new int[26][2];//26个字母2列 表示该字母对应的区间//遍历每个字符记录每个字母的区间for (int i = 0; i < s.length(); i++) {//第一次出现,更新起始位置if (i > 0 && letter[s.charAt(i) - 'a'][0] == 0) {letter[s.charAt(i) - 'a'][0] = i;}//第一个元素区别对待一下(一定要放在下面,否则后面如果出现和第一个元素相同的字母[起始坐标为0],会错误更新起始位置)letter[s.charAt(0) - 'a'][0] = 0;// 更新结束位置letter[s.charAt(i) - 'a'][1] = i;}
//字符串从前往后遍历,其起始位置已经是有序的了,只需查看是否覆盖即可for (int i = 1; i < s.length(); i++) {if (letter[s.charAt(i - 1) - 'a'][1] >= letter[s.charAt(i) - 'a'][0]) {//重叠letter[s.charAt(i) - 'a'][0] = Math.min(letter[s.charAt(i - 1) - 'a'][0], letter[s.charAt(i) - 'a'][0]);//取最小左边letter[s.charAt(i) - 'a'][1] = Math.max(letter[s.charAt(i - 1) - 'a'][1], letter[s.charAt(i) - 'a'][1]);//取最大右边} else {左边界大于右边界 即分割count = letter[s.charAt(i - 1) - 'a'][1] - letter[s.charAt(i - 1) - 'a'][0] + 1;res.add(count);}}// 每次划分片段都是在片段的下一个区间进行的,最后一个片段得单独处理count = letter[s.charAt(s.length() - 1) - 'a'][1] - letter[s.charAt(s.length() - 1) - 'a'][0] + 1;res.add(count);return res;}
}

②将字符串映射到LinkedHashMap中,key为出现过的字母,value为二维数组(存储key对应字母的区间索引),然后判断区间是否覆盖(两种方法差不多,映射到哈希数组耗时少些)

class Solution {public List<Integer> partitionLabels(String s) {List<Integer> list = new LinkedList<>();LinkedHashMap<Character, int[]> map = new LinkedHashMap<>();int[][] intervals = new int[s.length()][2];//将字符串映射到map中,key为字母,value为字母所对应的区间int index = 0;for (int i = 0; i < s.length(); i++) {if (map.containsKey(s.charAt(i))) {map.get(s.charAt(i))[1] = i;map.put(s.charAt(i), map.get(s.charAt(i)));} else {//第一次遇到元素,将起始位置存入二维数组,其每一个元素是一维数组intervals[index][0] = i;intervals[index][1] = i;map.put(s.charAt(i), intervals[index]);index++;}}int left = intervals[0][0];//左边界int right = intervals[0][1];//右边界for (int i = 1; i < intervals.length; i++) {if (right < intervals[i][0]) {//无重叠list.add(right - left + 1);left = right + 1/*intervals[i][0]*/;//更新左边界}//不管是否重叠都需更新右边界right = Math.max(right, intervals[i][1]);//更新最大右边界}// 每次划分片段都是在片段的下一个区间进行的,最后一个片段得单独处理list.add(right - left + 1);return list;}
}

③使用一个for循环,更新右边界,当移动下标达到最大右边界时,说明已经找到了一个片段(与【45.跳跃游戏 II】有点像)耗时最少

  • 在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。
  • 步骤:
    • 使用一维数组只统计每一个字符最后出现的位置;
    • 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点。
class Solution {public List<Integer> partitionLabels(String s) {List<Integer> res = new LinkedList<>();int[] edge = new int[26];//for循环统计每个字母的最大右边界for (int i = 0; i < s.length(); i++) {edge[s.charAt(i) - 'a'] = i;}//找分割点,for循环中,更新右边界,当移动下标达到最大右边界时,说明已经找到了分割点int left = 0;int right = 0;for (int i = 0; i < s.length(); i++) {if (right < edge[s.charAt(i) - 'a']) right = edge[s.charAt(i) - 'a'];//更新最大右边界//上一行代码可写成://right = Math.max(edge[s.charAt(i) - 'a'],right);if (i == right) {//当移动下标达到最大右边界时,说明已经找到了分割点res.add(right - left + 1);left = right + 1;}}return res;}
}

56. 合并区间

本质其实还是判断重叠区间问题。

贪心算法

按照左边界排序,排序之后局部最优:每次合并都取最大的右边界,这样就可以合并更多的区间了,整体最优:合并所有重叠的区间。

按照重叠区间来比较,则最后一个区间需单独处理

import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
class Solution {public int[][] merge(int[][] intervals) {//先将区间按左边界从小到大排序Arrays.sort(intervals, (a, b) -> Integer.compare(a[0], b[0]));List<int[]> res = new LinkedList<>();//临时存放不重叠的区间int left = intervals[0][0];int right = intervals[0][1];//按照重叠区间来比较,则最后一个区间需单独处理for (int i = 1; i < intervals.length; i++) {if (right < intervals[i][0]) {//如果区间不重叠res.add(new int[]{left, right});//加入区间left = intervals[i][0];//left}right = Math.max(right, intervals[i][1]);//更新最大右边界}//最后一个区间需单独处理res.add(new int[]{left, right});int[][] res1 = new int[res.size()][2];res.toArray(res1);return res1;}
}

时间复杂度 : O(NlogN) ,排序需要O(NlogN)
空间复杂度 : O(logN) ,java 的内置排序是快速排序,需要 O(logN)空间


这篇关于代码随想录算法训练营第三十六天| 435.无重叠区间、763.划分字母区间、56.合并区间的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/920069

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...