【Leetcode每日一题】 动态规划 - 地下城游戏(难度⭐⭐⭐)(61)

2024-04-20 08:44

本文主要是介绍【Leetcode每日一题】 动态规划 - 地下城游戏(难度⭐⭐⭐)(61),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 题目解析

题目链接:174. 地下城游戏

这个问题的理解其实相当简单,只需看一下示例,基本就能明白其含义了。

2.算法原理

一、状态表定义

在解决地下城游戏问题时,我们首先需要对状态进行恰当的定义。一个直观的想法是,从起点开始,到达[i, j]位置时所需的最低初始健康点数。然而,这样的定义会导致状态转移时面临困难,因为当前位置的健康点数会受到后续路径的影响。

为了解决这个问题,我们采用另一种状态定义方式:从[i, j]位置出发,到达终点时所需的最低初始健康点数。这样定义的好处在于,当我们在[i, j]位置时,后续的最佳状态已经确定,从而可以顺利地进行状态转移。

因此,我们定义状态表dp如下:dp[i][j]表示从[i, j]位置出发,到达终点时所需的最低初始健康点数。

二、状态转移过程

在[i, j]位置,玩家有两种选择:向右走或向下走。我们需要根据这两种选择来推导dp[i][j]的值。

  1. 向右走到达下一个位置,然后从该位置继续到达终点。根据状态定义,这要求我们在[i, j]位置的最低健康点数加上当前位置的消耗,应大于等于右边位置的最低健康点数。即:x + dungeon[i][j] >= dp[i][j + 1]。通过移项,我们得到x的一个可能取值:x >= dp[i][j + 1] - dungeon[i][j]。

  2. 向下走到达下一个位置,然后从该位置继续到达终点。同样地,我们要求[i, j]位置的最低健康点数加上当前位置的消耗,应大于等于下边位置的最低健康点数。即:x + dungeon[i][j] >= dp[i + 1][j]。通过移项,我们得到x的另一个可能取值:x >= dp[i + 1][j] - dungeon[i][j]。

为了得到最小的初始健康点数,我们取这两种情况下的最小值作为dp[i][j]的候选值。因此,状态转移方程为:dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]。

然而,需要注意的是,如果当前位置的dungeon[i][j]是一个较大的正数,那么dp[i][j]的值可能会变成0或负数,这意味着最低点数会小于1,导致玩家死亡。因此,我们需要对dp[i][j]进行修正,确保其值至少为1。修正后的状态转移方程为:dp[i][j] = max(1, dp[i][j])。

三、初始化

为了正确地进行状态转移,我们需要对dp表进行初始化。一个常用的技巧是在dp表的最前面添加一行和一列辅助节点。这些辅助节点的值需要保证后续填表是正确的。在本题中,我们可以将所有辅助节点的值初始化为无穷大,然后设置dp[m][n - 1] = dp[m - 1][n] = 1,其中m和n分别是地图的行数和列数。

四、填表顺序

根据状态转移方程,我们需要从下往上逐行填写dp表,每行从左往右进行填写。这样的填表顺序可以确保在计算每个位置的dp值时,其右侧和下方的位置已经计算完毕,从而可以利用这些已知值进行状态转移。

五、返回值

最后,根据状态表定义,我们需要返回dp[0][0]的值,即从起点出发到达终点时所需的最低初始健康点数。

3.代码编写

class Solution 
{
public:int calculateMinimumHP(vector<vector<int>>& d) {int m = d.size(), n = d[0].size();vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));dp[m][n - 1] = dp[m - 1][n] = 1;for(int i = m - 1; i >= 0; i--){for(int j = n - 1; j >= 0; j--){dp[i][j] = min(dp[i][j + 1], dp[i + 1][j]) - d[i][j];dp[i][j] = max(1, dp[i][j]);}}return dp[0][0];}
};

The Last

嗯,就是这样啦,文章到这里就结束啦,真心感谢你花时间来读。

觉得有点收获的话,不妨给我点个吧!

如果发现文章有啥漏洞或错误的地方,欢迎私信我或者在评论里提醒一声~

这篇关于【Leetcode每日一题】 动态规划 - 地下城游戏(难度⭐⭐⭐)(61)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/919794

相关文章

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...

Nginx实现动态封禁IP的步骤指南

《Nginx实现动态封禁IP的步骤指南》在日常的生产环境中,网站可能会遭遇恶意请求、DDoS攻击或其他有害的访问行为,为了应对这些情况,动态封禁IP是一项十分重要的安全策略,本篇博客将介绍如何通过NG... 目录1、简述2、实现方式3、使用 fail2ban 动态封禁3.1 安装 fail2ban3.2 配

Vue3中的动态组件详解

《Vue3中的动态组件详解》本文介绍了Vue3中的动态组件,通过`component:is=动态组件名或组件对象/component`来实现根据条件动态渲染不同的组件,此外,还提到了使用`markRa... 目录vue3动态组件动态组件的基本使用第一种写法第二种写法性能优化解决方法总结Vue3动态组件动态

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后