Group Query Attention (GQA) 机制详解以及手动实现计算

2024-04-19 21:36

本文主要是介绍Group Query Attention (GQA) 机制详解以及手动实现计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Group Query Attention (GQA) 机制详解

1. GQA的定义

Grouped-Query Attention (GQA) 是对 Multi-Head Attention (MHA) 和 Multi-Query Attention (MQA) 的扩展。通过提供计算效率和模型表达能力之间的灵活权衡,实现了查询头的分组。GQA将查询头分成了G个组,每个组共享一个公共的键(K)和值(V)投影。

2. GQA的变体

GQA有三种变体:

  • GQA-1:一个单独的组,等同于 Multi-Query Attention (MQA)。
  • GQA-H:组数等于头数,基本上与 Multi-Head Attention (MHA) 相同。
  • GQA-G:一个中间配置,具有G个组,平衡了效率和表达能力。
3. GQA的优势

使用G个组可以减少存储每个头的键和值所需的内存开销,特别是在具有大的上下文窗口或批次大小的情况下。GQA提供了对模型质量和效率的细致控制。

4. GQA的实现

GQA的最简形式可以通过实现 GroupedQueryAttention 类来实现。GroupedQueryAttention 类继承自 Attention 类,重写了 forward 方法,其中使用了 MultiQueryAttention 类的实例来处理每个组的查询。通过将每个组的结果拼接起来,然后与投影矩阵进行矩阵乘法运算,最终得到 GQA 的输出。[1]

pytorch 示例实现:

假设我们有以下初始化的query, key, value:

# shapes: (batch_size, seq_len, num_heads, head_dim)
query = torch.randn(1, 256, 8, 64)
key = torch.randn(1, 256, 2, 64)
value = torch.randn(1, 256, 2, 64)
1. 确定分组数量

首先,我们需要确定将查询头分为多少组。在这个例子中,我们有8个查询头,而键和值的头数为2,所以我们可以将查询头分为4组,每组有2个查询头。

2. 对查询进行分组

然后,我们将查询头分组。我们可以使用 torch.chunk 函数将查询张量沿着头维度分割成4个组,每个组有2个头。

query_groups = torch.chunk(query, 4, dim=2)  # shape of each group: (1, 256, 2, 64)
3. 计算注意力分数

对于每一个查询组,我们计算它与键的注意力分数。我们首先计算查询组和键的点积,然后通过 torch.softmax 函数得到注意力分数。

attention_scores = []
for query_group in query_groups:score = torch.matmul(query_group, key.transpose(-2, -1))  # shape: (1, 256, 2, 256)score = torch.softmax(score, dim=-1)attention_scores.append(score)
4. 计算注意力输出

接下来,我们使用注意力分数对值进行加权求和,得到每一个查询组的注意力输出。

attention_scores = []
for query_group in query_groups:score = torch.matmul(query_group, key.transpose(-2, -1))  # shape: (1, 256, 2, 256)score = torch.softmax(score, dim=-1)attention_scores.append(score)
5. 拼接输出

最后,我们将所有查询组的注意力输出拼接起来,得到最终的 Grouped Query Attention 的输出。

attention_outputs = []
for score in attention_scores:output = torch.matmul(score, value)  # shape: (1, 256, 2, 64)attention_outputs.append(output)

这就是 Grouped Query Attention 的实现过程。在这个过程中,我们将查询头分组,然后对每一个查询组分别计算注意力分数和输出,最后将所有查询组的输出拼接起来。这样可以减少存储每个头的键和值所需的内存开销,特别是在具有大的上下文窗口或批次大小的情况下。


  1. Grouped-Query Attention (GQA) - The Large Language Model Playbook

  2. 安全验证 - 知乎
  3. 安全验证 - 知乎
  4. 安全验证 - 知乎
  5. Grouped-Query Attention (GQA) - The Large Language Model Playbook

这篇关于Group Query Attention (GQA) 机制详解以及手动实现计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918517

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P