Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models

2024-04-19 20:12

本文主要是介绍Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models

相关链接:arxiv
关键字:Multimodal Language ModelsReka CoreReka FlashReka EdgeState-of-the-Art

摘要

我们介绍了 Reka Core、Flash 和 Edge,这是一系列由 Reka 从头开始训练的强大多模态语言模型。Reka 模型能够处理和推理文本、图像、视频和音频输入。这份技术报告讨论了这些模型的一些训练细节,并提供了全面的评估结果。我们展示了 Reka Edge 和 Reka Flash 不仅是各自计算类别中的最新技术,而且还超过了许多更大的模型,为各自的计算类别提供了巨大的价值。同时,我们最有能力且最大的模型 Reka Core,在自动评估和盲人评估中接近最佳前沿模型(OpenAI, 2023; Google, 2023; Anthropic, 2024)。在图像问答基准测试(例如 MMMU, VQAv2)中,Core 与 GPT4-V 竞争性表现。在多模态聊天中,Core 在盲人第三方人类评估设置下排名第二,超过了其他模型,如 Claude 3 Opus。在文本基准测试中,Core 不仅在一系列成熟基准测试(例如 MMLU, GSM8K)上与其他前沿模型竞争性表现,而且在人类评估中超过了 GPT4-0613。在视频问答(Perception-Test)中,Core 超过了 Gemini Ultra。模型已在 chat.reka.ai 生产环境中使用。还可以在 showcase.reka.ai 找到非挑选的定性示例展示。

核心方法

image.png

  1. 模型规模:Reka Edge 和 Flash 分别拥有 7B 和 21B 参数的密集模型。
  2. 多模态输入:模型能够处理文本、图像、视频和音频输入。
  3. 架构:采用模块化的编码器-解码器架构,支持多模态输入。
  4. 训练数据:包括大量公开可用和专有/许可的数据集,知识截止日期为 2023 年 11 月。
  5. 上下文长度:标准模型的上下文长度为 8K,而 Reka Flash 和 Core 的长上下文模型为 128K。
  6. 计算与基础设施:主要在 Nvidia H100s 上使用 Pytorch 进行训练。
  7. 后训练:包括指令调整和强化学习的人类反馈。

实验说明

Reka 模型在语言和视觉(视频 + 图像)任务上的综合评估和基准测试,以及作为初创公司训练大型多模态模型的一些有趣技术细节和幕后情况。讨论的领域包括基础设施、数据管道、计算、注释管道等。

实验结果数据

Model / EvalReka Core v0.5Reka Flash v1.5GPT-4Claude 3 OpusClaude 3 SonnetGemini UltraGemini Pro 1.5
MMLU (Knowledge)83.275.986.486.879.083.781.9
GSM8K (Reasoning)92.285.892.095.092.394.491.7
HumanEval (Coding)76.872.076.584.973.074.471.9
GPQA (main) (Hard QA)38.234.038.150.239.135.741.5
MMMU (Image QA)56.353.356.859.153.159.458.5
VQAv2 (Image QA)78.178.477.2--77.873.2
Perception-test (Video QA)59.356.4---54.751.13

实验结果显示 Reka Core 在多个基准测试中与其他前沿模型竞争性表现,并在某些情况下超过了 Gemini Ultra 和 Claude 3 系列模型。Reka Flash 和 Core 在视频问答中超过了 Gemini Ultra 和 Pro 1.5。

结论

我们介绍了新的一系列强大的多模态模型,即 Reka Core、Flash 和 Edge。Reka Flash 和 Edge 在计算类别基础上树立了新的最先进技术,通常为它们的规模提供了巨大的价值。我们的核心模型在人类评估和自动基准测试中接近前沿类别模型。Reka Core 仍在改进中,因此我们预计在中期内会看到更多的改进。大型语言模型(LLM)领域仍在快速发展,尽管有大量的噪声。我们希望这份技术报告展示了在有限资源下从头开始构建前沿类别模型所需的严谨性。

这篇关于Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918408

相关文章

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

什么是 Flash Attention

Flash Attention 是 由 Tri Dao 和 Dan Fu 等人在2022年的论文 FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness 中 提出的, 论文可以从 https://arxiv.org/abs/2205.14135 页面下载,点击 View PDF 就可以下载。 下面我

STM32内部闪存FLASH(内部ROM)、IAP

1 FLASH简介  1 利用程序存储器的剩余空间来保存掉电不丢失的用户数据 2 通过在程序中编程(IAP)实现程序的自我更新 (OTA) 3在线编程(ICP把整个程序都更新掉) 1 系统的Bootloader写死了,只能用串口下载到指定的位置,启动方式也不方便需要配置BOOT引脚触发启动  4 IAP(自己写的Bootloader,实现程序升级) 1 比如蓝牙转串口,

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

STM32 ADC+DMA导致写FLASH失败

最近用STM32G070系列的ADC+DMA采样时,遇到了一些小坑记录一下; 一、ADC+DMA采样时进入死循环; 解决方法:ADC-dma死循环问题_stm32 adc dma死机-CSDN博客 将ADC的DMA中断调整为最高,且增大ADCHAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buffer, ADC_Buffer_Size); 的ADC_Bu

UML- 统一建模语言(Unified Modeling Language)创建项目的序列图及类图

陈科肇 ============= 1.主要模型 在UML系统开发中有三个主要的模型: 功能模型:从用户的角度展示系统的功能,包括用例图。 对象模型:采用对象、属性、操作、关联等概念展示系统的结构和基础,包括类图、对象图、包图。 动态模型:展现系统的内部行为。 包括序列图、活动图、状态图。 因为要创建个人空间项目并不是一个很大的项目,我这里只须关注两种图的创建就可以了,而在开始创建UML图

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

jupyter在加载pkl文件时报错ModuleNotFoundError: No module named 'pandas.core.internals.managers'; '的解决方法

笔者当看到这个错误的时候一脸懵逼,在pycharm上正常运行的code 放在jupyter就不成了,于是就研究一翻。 一开始以为自己的pkl文件有问题,研究重点放在这里,最后发现不是。 然后取搜索pycharm和jupyter下的python的\Lib\site-packages\pandas\core\internals有什么不同 发现jupyter下没有pandas\core\intern

C#/.NET/.NET Core推荐学习路线文档文章

前言 专门为C#/.NET/.NET Core推荐学习路线&文档&文章提供的一个Issues,各位小伙伴可以把自己觉得不错的学习路线、文档、文章相关地址分享出来🤞。 https://github.com/YSGStudyHards/DotNetGuide/issues/10 🏷️C#/.NET/.NET Core优质学习资料 📚.NET 入门教程 📚

ASP.NET Core 入门教学十七 GraphQL入门指南

GraphQL 是一种用于 API 的查询语言,允许客户端请求所需的数据,并能够合并多个资源到一个请求中。在 ASP.NET Core 中使用 GraphQL 可以提供更灵活、高效和实用的数据查询方式。以下是 ASP.NET Core 中 GraphQL 的入门指南: 1. 安装必要的 NuGet 包 首先,你需要安装以下 NuGet 包: GraphQLGraphQL.Server.Tra