Covalent Network(CQT)Q1 全球钱包用户覆盖增长超 4000 万,结构化数据集将服务超 2.8 亿用户

本文主要是介绍Covalent Network(CQT)Q1 全球钱包用户覆盖增长超 4000 万,结构化数据集将服务超 2.8 亿用户,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Covalent(CQT)Q1 全球钱包用户覆盖增长超 4000 万

Covalent Network(CQT)报告其数据使用的活跃钱包数量的显著增长,现在跨 Web3 生态系统的活跃钱包数已超过 2.8 亿,而在 2024 年 1 月初这一数据为 2.4 亿左右。这一增长凸显了 Covalent Network(CQT) 的重大影响力以及其对提供结构化、全面及可验证区块链数据的承诺,这为 AI 等下游用户提供了高效的结构化链上数据。作为服务于从 DeFi 到 AI 等多领域的基础设施,Covalent Network(CQT)在应对现代区块链数据需求的挑战、推动跨多个领域的创新等方面,起着至关重要的作用。

支持多样化 Web3 应用和 AI 的集成

Covalent Network(CQT)的结构化数据,旨在克服在大规模获取、存储和提供有用的区块链数据方面的重大挑战,这对开发者和最终用户都有益。在多个生态系统中,对实时结构化区块链数据有着迫切的需求,尤其是当其他方式(如运行公共区块链节点)在一个快速增长的多链环境中显得不可扩展,并且没有统一的数据捕获模式时。

Covalent(CQT)Q1 全球钱包用户覆盖增长超 4000 万

使用 Covalent Network(CQT)数据的活跃钱包累计数量

这些活跃的钱包代表了一个多样化的用户群体:包括 DeFi 协议用户、NFT 收藏者、GameFi 玩家、SocialFi 用户等各类群体。作为 Web3 中结构化数据和长期数据可用性的领导者,Covalent Network(CQT)的定位是支持像人工智能这样,依赖结构化数据且呈现指数级增长的领域。通过追求实时数据丰富化的进步,Covalent Network(CQT)将继续为越来越多的钱包提供及时、准确、全面的信息,同时也促进 Web3 生态系统的发展。

Covalent(CQT)Q1 全球钱包用户覆盖增长超 4000 万

主要区块链与 Covalent Network(CQT)数据集交互数据

随着 ChatGPT 和其他大型语言模型(LLM)应用的出现,人工智能和机器学习对大量结构化数据集的依赖已成为关注的焦点。人工智能在各个行业和日常生活中的变革潜力,很大程度上依赖于这些数据源的质量和规模。Covalent Network(CQT)与人工智能和 Web3 的结合预示着一个新纪元,其持续更新的数据集——随着每个新区块和区块链结构的扩张而增长——变得日益重要。目前,数千个专为 Web3 设计的应用程序正在使用这些数据,而对于人工智能的激增兴趣,也预示着新一波开发者热切希望使用 Covalent Network(CQT)的资源探索创新的用例。

未来展望

展望未来,Covalent Network(CQT)致力于加深其技术栈,并扩大其服务范围,以满足区块链行业不断演变的需求。Covalent Network(CQT)已经做好了准备,通过即将到来的创新来维持其增长轨迹,这些创新旨在提高数据的可访问性和质量——这些都是推动区块链大规模采用的关键因素。

关于 Covalent Network(CQT)

Covalent(CQT)创建了Web3最大的数据可用性层,使得数百万用户有能力在 AI、大数据和 DeFi 领域中构建新经济产品。它通过一个独特的统一 API,深入致力于使所有人都能访问结构化数据,从而实现数据获取的民主化。作为 DePIN 生态系统的核心组成部分,Covalent Network(CQT)为开发者、分析师、创新者以及成千上万的客户,提供了对超过 225 个区块链以及不断增长的数据的全面、实时访问。

这篇关于Covalent Network(CQT)Q1 全球钱包用户覆盖增长超 4000 万,结构化数据集将服务超 2.8 亿用户的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918125

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

SpringCloud之LoadBalancer负载均衡服务调用过程

《SpringCloud之LoadBalancer负载均衡服务调用过程》:本文主要介绍SpringCloud之LoadBalancer负载均衡服务调用过程,具有很好的参考价值,希望对大家有所帮助,... 目录前言一、LoadBalancer是什么?二、使用步骤1、启动consul2、客户端加入依赖3、以服务

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密