使用Azure AI Search和LlamaIndex构建高级RAG应用

2024-04-19 13:36

本文主要是介绍使用Azure AI Search和LlamaIndex构建高级RAG应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RAG 是一种将公司信息合并到基于大型语言模型 (LLM) 的应用程序中的常用方法。借助 RAG,AI 应用程序可以近乎实时地访问最新信息,团队可以保持对其数据的控制。

在 RAG 中,您可以评估和修改各个阶段以改进结果,它们分为三类:预检索、检索和检索后。

  1. 预检索可提高使用查询重写等技术检索的数据的质量。
  2. 检索使用混合搜索和语义排序等高级技术改进结果。
  3. 检索后侧重于优化检索信息和增强提示。

LlamaIndex 为初学者和有经验的开发人员提供了一个全面的框架和生态系统,以在其数据源上构建 LLM 应用程序。

Azure AI Search是一个信息检索平台,具有尖端的搜索技术和无缝的平台集成,专为任何规模的高性能生成式 AI 应用程序而构建。

我们在预检索中使用LlamaIndex 进行查询转换,并使用 Azure AI 搜索进行高级检索,可以生成构建更好的RAG应用程序。

预检索技术和优化查询编排

为了优化预检索,LlamaIndex 提供了查询转换,这是一项优化用户输入的强大功能。一些查询转换技术包括:

  • 路由:保持查询不变,但标识查询应用到的相关工具子集。将这些工具输出为相关选项。
  • 查询重写:保持工具不变,但以各种不同的方式重写查询,以针对相同的工具执行。
  • 子问题:将查询分解为不同工具上的多个子问题,由其元数据标识。
  • ReAct 代理工具选取:给定初始查询,确定 (1) 要选取的工具,以及 (2) 要在工具上执行的查询。

以查询重写为例:查询重写使用 LLM 将初始查询重新表述为多种形式。这使开发人员能够探索数据的不同方面,从而产生更细致和准确的响应。通过重写查询,开发人员可以生成多个查询,用于集成检索和融合检索,从而获得更高质量的检索结果。利用 Azure OpenAI,可以将初始查询分解为多个子查询。

请考虑以下初始查询:

“作者怎么了?”

如果问题过于宽泛,或者似乎不太可能在我们的语料库文本中找到直接的比较,建议将问题分解为多个子查询。

子查询:

  1. “作者最近写的一本书是什么?”
  2. “作者获得过什么文学奖吗?”
  3. “有没有即将举行的活动或对作者的采访?”
  4. “作者的背景和写作风格是什么?”
  5. “围绕作者有什么争议或丑闻吗?”

子问题查询引擎

LlamaIndex 的一大优点是,像这样的高级检索策略是内置在框架中的。例如,可以使用子问题查询引擎在一个步骤中处理上述子查询,该引擎将问题分解为更简单的问题,然后将答案组合成一个响应。

 response = query_engine.query("What happened to the author?")

  

使用 Azure AI 搜索进行检索

为了增强检索功能,Azure AI 搜索提供混合搜索和语义排名。混合搜索同时执行关键字和向量检索,并应用融合步骤(倒数秩融合 (RRF))从每种技术中选择最佳结果。

语义排名器在初始 BM25 排名或 RRF 排名结果上添加辅助排名。该二级排名使用多语言深度学习模型来推广语义上最相关的结果。

通过将“query_type”参数更新为“semantic”,可以很容易地启用语义排名器。由于语义排名是在 Azure AI 搜索堆栈中完成的,因此我们的数据显示,语义排名器与混合搜索相结合是提高相关性的最有效方法。

此外,Azure AI 搜索还支持矢量查询中的筛选器。您可以设置筛选器模式,以便在矢量查询执行之前或之后应用筛选器:

  • 预筛选模式:在查询执行前应用筛选,减少向量搜索算法查找相似内容的搜索表面积。预滤波通常比后滤波慢,但有利于召回率和精确度。
  • 筛选后模式:在查询执行后应用筛选器,缩小搜索结果范围。后过滤比选择更注重速度。

总结

通过与 LlamaIndex 的协作,可以提供更简单的方法来优化预检索和检索,以实现高级 RAG应用。

这篇关于使用Azure AI Search和LlamaIndex构建高级RAG应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/917690

相关文章

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

使用Python实现获取网页指定内容

《使用Python实现获取网页指定内容》在当今互联网时代,网页数据抓取是一项非常重要的技能,本文将带你从零开始学习如何使用Python获取网页中的指定内容,希望对大家有所帮助... 目录引言1. 网页抓取的基本概念2. python中的网页抓取库3. 安装必要的库4. 发送HTTP请求并获取网页内容5. 解

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

使用Python实现网络设备配置备份与恢复

《使用Python实现网络设备配置备份与恢复》网络设备配置备份与恢复在网络安全管理中起着至关重要的作用,本文为大家介绍了如何通过Python实现网络设备配置备份与恢复,需要的可以参考下... 目录一、网络设备配置备份与恢复的概念与重要性二、网络设备配置备份与恢复的分类三、python网络设备配置备份与恢复实